Semi-supervised Learning for Large Scale Image Cosegmentation

This paper introduces to use semi-supervised learning for large scale image co segmentation. Different from traditional unsupervised co segmentation that does not use any segmentation ground truth, semi-supervised co segmentation exploits the similarity from both the very limited training image fore...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2013 IEEE International Conference on Computer Vision s. 393 - 400
Hlavní autoři: Wang, Zhengxiang, Liu, Rujie
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.12.2013
Témata:
ISSN:1550-5499
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper introduces to use semi-supervised learning for large scale image co segmentation. Different from traditional unsupervised co segmentation that does not use any segmentation ground truth, semi-supervised co segmentation exploits the similarity from both the very limited training image foregrounds, as well as the common object shared between the large number of unsegmented images. This would be a much practical way to effectively co segment a large number of related images simultaneously, where previous unsupervised co segmentation work poorly due to the large variances in appearance between different images and the lack of segmentation ground truth for guidance in co segmentation. For semi-supervised co segmentation in large scale, we propose an effective method by minimizing an energy function, which consists of the inter-image distance, the intra-image distance and the balance term. We also propose an iterative updating algorithm to efficiently solve this energy function, which decomposes the original energy minimization problem into sub-problems, and updates each image alternatively to reduce the number of variables in each sub-problem for computation efficiency. Experiment results on iCoseg and Pascal VOC datasets show that the proposed co segmentation method can effectively co segment hundreds of images in less than one minute. And our semi-supervised co segmentation is able to outperform both unsupervised co segmentation as well as fully supervised single image segmentation, especially when the training data is limited.
AbstractList This paper introduces to use semi-supervised learning for large scale image co segmentation. Different from traditional unsupervised co segmentation that does not use any segmentation ground truth, semi-supervised co segmentation exploits the similarity from both the very limited training image foregrounds, as well as the common object shared between the large number of unsegmented images. This would be a much practical way to effectively co segment a large number of related images simultaneously, where previous unsupervised co segmentation work poorly due to the large variances in appearance between different images and the lack of segmentation ground truth for guidance in co segmentation. For semi-supervised co segmentation in large scale, we propose an effective method by minimizing an energy function, which consists of the inter-image distance, the intra-image distance and the balance term. We also propose an iterative updating algorithm to efficiently solve this energy function, which decomposes the original energy minimization problem into sub-problems, and updates each image alternatively to reduce the number of variables in each sub-problem for computation efficiency. Experiment results on iCoseg and Pascal VOC datasets show that the proposed co segmentation method can effectively co segment hundreds of images in less than one minute. And our semi-supervised co segmentation is able to outperform both unsupervised co segmentation as well as fully supervised single image segmentation, especially when the training data is limited.
Author Liu, Rujie
Wang, Zhengxiang
Author_xml – sequence: 1
  givenname: Zhengxiang
  surname: Wang
  fullname: Wang, Zhengxiang
  email: wangzhengxiang@cn.fujitsu.com
  organization: Fujitsu R&D Center Co., Ltd., Beijing, China
– sequence: 2
  givenname: Rujie
  surname: Liu
  fullname: Liu, Rujie
  email: rjliu@cn.fujitsu.com
  organization: Fujitsu R&D Center Co., Ltd., Beijing, China
BookMark eNotj79LxDAcxSOc4F11c3Pp6NKa300GBymeHhQcTl1Lcvn2iLTpmbSC_72Fc3oPPh8evA1ahTEAQrcEl4Rg_bCr68-SYsJKIS_QhvBKa6o4piu0JkLgQnCtr9AmpS-M2YLkGj3uYfBFmk8Qf3wClzdgYvDhmHdjzBsTj5DvD6aHfDeYpddjguMAYTKTH8M1uuxMn-DmPzP0sX1-r1-L5u1lVz81hadYTYWhlbVSWenASUGAykoJwTuhqLRVpxwDDJQbBRxj6mynBLaOM9AHB1YCy9D9efcUx-8Z0tQOPh2g702AcU4tkVKrSpDlVobuzqoHgPYU_WDibysXSIRif3tpVpU
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/ICCV.2013.56
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1479928402
9781479928408
EndPage 400
ExternalDocumentID 6751158
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-a27bb68b6ded651e2678554f5826b7f8d3e0e24a8e4002dbf850bd43e9cdeb6e3
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351830500050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1550-5499
IngestDate Thu Jul 10 19:35:39 EDT 2025
Wed Aug 13 06:22:44 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-a27bb68b6ded651e2678554f5826b7f8d3e0e24a8e4002dbf850bd43e9cdeb6e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1669875100
PQPubID 23500
PageCount 8
ParticipantIDs ieee_primary_6751158
proquest_miscellaneous_1669875100
PublicationCentury 2000
PublicationDate 20131201
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 20131201
  day: 01
PublicationDecade 2010
PublicationTitle 2013 IEEE International Conference on Computer Vision
PublicationTitleAbbrev iccv
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
ssj0001967680
Score 2.2348573
Snippet This paper introduces to use semi-supervised learning for large scale image co segmentation. Different from traditional unsupervised co segmentation that does...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 393
SubjectTerms Binary quadratic programming problem
Computer vision
Energy conservation
Energy management
Energy minimization function
Ground truth
Histograms
Image cosegmentation
Image segmentation
Iterative algorithms
Mathematical analysis
Mathematical models
Minimization
Quadratic programming
Segmentation
Segments
Semi-supervised learning
Semisupervised learning
Training
Training data
Vectors
Title Semi-supervised Learning for Large Scale Image Cosegmentation
URI https://ieeexplore.ieee.org/document/6751158
https://www.proquest.com/docview/1669875100
WOSCitedRecordID wos000351830500050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEF6s9NCTbbXUvkihx67muY9DT6FSQUToA28huzsRDyZiTH9_Z2PUQ3tpTglJIMxm5_tm95sZQp64a3Toa0GVyVIa4kGFxMsI6WuYgWCurqvrT_h0KuZzOWuR50MuDADU4jMY2NN6L98UurJLZUMkt0hgxAk54ZzvcrWO6ymSIXN2914YYb_u8mgZOLUx0EH0LofjOP6yoq5gYNtW101VfnniGl5Gnf992DnpHfP0nNkBgS5IC_JL0mmIpdNM27JLXt5htaRltbaOocRbTVXVhYOU1ZlYMTg-jVDhjFfoX5y4KGGxarKS8h75HL1-xG-06ZtAl74rtjT1uVJMKGbAsMgDHwHJWj7CUELxTJgAXPDDVABOYN-oTESuMmEAUhtQDIIr0s6LHK6JE2VRpI0nNWQi1IpLFTCNEZsUGbfi2D7pWmsk611pjKQxRJ887s2Z4O9q9yDSHIqqTDzGJIZInuve_P3qLTmzQ7NTjNyR9nZTwT051d_bZbl5qMf8B3w1qno
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0gmugJFYz4WROPFvu53T14IhKISEhEw61hd6eEA4VQ6u93thQ46MWe2rRNmtnuvDe7b2YAHiNHq8BT3JY6mdgBHTYXdBkSfQ0S5MxRRXX9fjQY8PFYDCvwtMuFQcRCfIYtc1rs5euFys1S2TORWyIw_AAOwyDw3E221n5FRTDizs7WDxPwF30eDQe3TRS0k72L5167_WVkXX7LNK4u2qr88sUFwHRq__u0U2jsM_Ws4Q6DzqCC6TnUSmpplRM3q8PLB85ndpYvjWvI6FZZV3VqEWm1-kYOTk8TWFi9OXkYq73IcDov85LSBnx2Xkftrl12TrBnnsPX9sSLpGRcMo2ahS56BEnG9iEFEzJKuPbRQS-YcKQp7GmZ8NCROvBRKI2SoX8B1XSR4iVYYRKGSrtCYcIDJSMhfaYoZhM8iYw8tgl1Y414uSmOEZeGaMLD1pwx_bBmF2KS4iLPYpcxQUGS6zhXf796D8fd0Xs_7vcGb9dwYoZpox-5gep6leMtHKnv9Sxb3RXj_wOKQK3B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Semi-supervised+Learning+for+Large+Scale+Image+Cosegmentation&rft.au=Wang%2C+Zhengxiang&rft.au=Liu%2C+Rujie&rft.date=2013-12-01&rft.pub=IEEE&rft.issn=1550-5499&rft.spage=393&rft.epage=400&rft_id=info:doi/10.1109%2FICCV.2013.56&rft.externalDocID=6751158
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-5499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-5499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-5499&client=summon