Semi-supervised Learning for Large Scale Image Cosegmentation
This paper introduces to use semi-supervised learning for large scale image co segmentation. Different from traditional unsupervised co segmentation that does not use any segmentation ground truth, semi-supervised co segmentation exploits the similarity from both the very limited training image fore...
Uloženo v:
| Vydáno v: | 2013 IEEE International Conference on Computer Vision s. 393 - 400 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.12.2013
|
| Témata: | |
| ISSN: | 1550-5499 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper introduces to use semi-supervised learning for large scale image co segmentation. Different from traditional unsupervised co segmentation that does not use any segmentation ground truth, semi-supervised co segmentation exploits the similarity from both the very limited training image foregrounds, as well as the common object shared between the large number of unsegmented images. This would be a much practical way to effectively co segment a large number of related images simultaneously, where previous unsupervised co segmentation work poorly due to the large variances in appearance between different images and the lack of segmentation ground truth for guidance in co segmentation. For semi-supervised co segmentation in large scale, we propose an effective method by minimizing an energy function, which consists of the inter-image distance, the intra-image distance and the balance term. We also propose an iterative updating algorithm to efficiently solve this energy function, which decomposes the original energy minimization problem into sub-problems, and updates each image alternatively to reduce the number of variables in each sub-problem for computation efficiency. Experiment results on iCoseg and Pascal VOC datasets show that the proposed co segmentation method can effectively co segment hundreds of images in less than one minute. And our semi-supervised co segmentation is able to outperform both unsupervised co segmentation as well as fully supervised single image segmentation, especially when the training data is limited. |
|---|---|
| AbstractList | This paper introduces to use semi-supervised learning for large scale image co segmentation. Different from traditional unsupervised co segmentation that does not use any segmentation ground truth, semi-supervised co segmentation exploits the similarity from both the very limited training image foregrounds, as well as the common object shared between the large number of unsegmented images. This would be a much practical way to effectively co segment a large number of related images simultaneously, where previous unsupervised co segmentation work poorly due to the large variances in appearance between different images and the lack of segmentation ground truth for guidance in co segmentation. For semi-supervised co segmentation in large scale, we propose an effective method by minimizing an energy function, which consists of the inter-image distance, the intra-image distance and the balance term. We also propose an iterative updating algorithm to efficiently solve this energy function, which decomposes the original energy minimization problem into sub-problems, and updates each image alternatively to reduce the number of variables in each sub-problem for computation efficiency. Experiment results on iCoseg and Pascal VOC datasets show that the proposed co segmentation method can effectively co segment hundreds of images in less than one minute. And our semi-supervised co segmentation is able to outperform both unsupervised co segmentation as well as fully supervised single image segmentation, especially when the training data is limited. |
| Author | Liu, Rujie Wang, Zhengxiang |
| Author_xml | – sequence: 1 givenname: Zhengxiang surname: Wang fullname: Wang, Zhengxiang email: wangzhengxiang@cn.fujitsu.com organization: Fujitsu R&D Center Co., Ltd., Beijing, China – sequence: 2 givenname: Rujie surname: Liu fullname: Liu, Rujie email: rjliu@cn.fujitsu.com organization: Fujitsu R&D Center Co., Ltd., Beijing, China |
| BookMark | eNotj79LxDAcxSOc4F11c3Pp6NKa300GBymeHhQcTl1Lcvn2iLTpmbSC_72Fc3oPPh8evA1ahTEAQrcEl4Rg_bCr68-SYsJKIS_QhvBKa6o4piu0JkLgQnCtr9AmpS-M2YLkGj3uYfBFmk8Qf3wClzdgYvDhmHdjzBsTj5DvD6aHfDeYpddjguMAYTKTH8M1uuxMn-DmPzP0sX1-r1-L5u1lVz81hadYTYWhlbVSWenASUGAykoJwTuhqLRVpxwDDJQbBRxj6mynBLaOM9AHB1YCy9D9efcUx-8Z0tQOPh2g702AcU4tkVKrSpDlVobuzqoHgPYU_WDibysXSIRif3tpVpU |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/ICCV.2013.56 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1479928402 9781479928408 |
| EndPage | 400 |
| ExternalDocumentID | 6751158 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-i208t-a27bb68b6ded651e2678554f5826b7f8d3e0e24a8e4002dbf850bd43e9cdeb6e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351830500050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1550-5499 |
| IngestDate | Thu Jul 10 19:35:39 EDT 2025 Wed Aug 13 06:22:44 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i208t-a27bb68b6ded651e2678554f5826b7f8d3e0e24a8e4002dbf850bd43e9cdeb6e3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| PQID | 1669875100 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_6751158 proquest_miscellaneous_1669875100 |
| PublicationCentury | 2000 |
| PublicationDate | 20131201 |
| PublicationDateYYYYMMDD | 2013-12-01 |
| PublicationDate_xml | – month: 12 year: 2013 text: 20131201 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2013 IEEE International Conference on Computer Vision |
| PublicationTitleAbbrev | iccv |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0039286 ssj0001967680 |
| Score | 2.2348573 |
| Snippet | This paper introduces to use semi-supervised learning for large scale image co segmentation. Different from traditional unsupervised co segmentation that does... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 393 |
| SubjectTerms | Binary quadratic programming problem Computer vision Energy conservation Energy management Energy minimization function Ground truth Histograms Image cosegmentation Image segmentation Iterative algorithms Mathematical analysis Mathematical models Minimization Quadratic programming Segmentation Segments Semi-supervised learning Semisupervised learning Training Training data Vectors |
| Title | Semi-supervised Learning for Large Scale Image Cosegmentation |
| URI | https://ieeexplore.ieee.org/document/6751158 https://www.proquest.com/docview/1669875100 |
| WOSCitedRecordID | wos000351830500050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEF6s9NCTbbXUvkihx67muY9DT6FSQUToA28huzsRDyZiTH9_Z2PUQ3tpTglJIMxm5_tm95sZQp64a3Toa0GVyVIa4kGFxMsI6WuYgWCurqvrT_h0KuZzOWuR50MuDADU4jMY2NN6L98UurJLZUMkt0hgxAk54ZzvcrWO6ymSIXN2914YYb_u8mgZOLUx0EH0LofjOP6yoq5gYNtW101VfnniGl5Gnf992DnpHfP0nNkBgS5IC_JL0mmIpdNM27JLXt5htaRltbaOocRbTVXVhYOU1ZlYMTg-jVDhjFfoX5y4KGGxarKS8h75HL1-xG-06ZtAl74rtjT1uVJMKGbAsMgDHwHJWj7CUELxTJgAXPDDVABOYN-oTESuMmEAUhtQDIIr0s6LHK6JE2VRpI0nNWQi1IpLFTCNEZsUGbfi2D7pWmsk611pjKQxRJ887s2Z4O9q9yDSHIqqTDzGJIZInuve_P3qLTmzQ7NTjNyR9nZTwT051d_bZbl5qMf8B3w1qno |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0gmugJFYz4WROPFvu53T14IhKISEhEw61hd6eEA4VQ6u93thQ46MWe2rRNmtnuvDe7b2YAHiNHq8BT3JY6mdgBHTYXdBkSfQ0S5MxRRXX9fjQY8PFYDCvwtMuFQcRCfIYtc1rs5euFys1S2TORWyIw_AAOwyDw3E221n5FRTDizs7WDxPwF30eDQe3TRS0k72L5167_WVkXX7LNK4u2qr88sUFwHRq__u0U2jsM_Ws4Q6DzqCC6TnUSmpplRM3q8PLB85ndpYvjWvI6FZZV3VqEWm1-kYOTk8TWFi9OXkYq73IcDov85LSBnx2Xkftrl12TrBnnsPX9sSLpGRcMo2ahS56BEnG9iEFEzJKuPbRQS-YcKQp7GmZ8NCROvBRKI2SoX8B1XSR4iVYYRKGSrtCYcIDJSMhfaYoZhM8iYw8tgl1Y414uSmOEZeGaMLD1pwx_bBmF2KS4iLPYpcxQUGS6zhXf796D8fd0Xs_7vcGb9dwYoZpox-5gep6leMtHKnv9Sxb3RXj_wOKQK3B |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Semi-supervised+Learning+for+Large+Scale+Image+Cosegmentation&rft.au=Wang%2C+Zhengxiang&rft.au=Liu%2C+Rujie&rft.date=2013-12-01&rft.pub=IEEE&rft.issn=1550-5499&rft.spage=393&rft.epage=400&rft_id=info:doi/10.1109%2FICCV.2013.56&rft.externalDocID=6751158 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-5499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-5499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-5499&client=summon |