An Electric Power Big Data Deployment Solution for Distributed Memory Computing
In the Big Data computing, improving performance with memory computing is one of hot spots. In the memory computing, the data deployment directly affects load balance and task efficiency. In the scene of memory computing of electric power data, two unsolved problems are: (1) only memory space, witho...
Uložené v:
| Vydané v: | Proceedings (International Symposium on Parallel Architectures, Algorithms and Programming. Print) s. 155 - 161 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.12.2015
|
| Predmet: | |
| ISSN: | 2168-3042 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the Big Data computing, improving performance with memory computing is one of hot spots. In the memory computing, the data deployment directly affects load balance and task efficiency. In the scene of memory computing of electric power data, two unsolved problems are: (1) only memory space, without the CPU frequency and nuclear number, could be considered for load balance and improving performance, (2) there are so many manual operations that it is difficult to complete data deployment automatically. This paper provides an electric power data deployment solution for distributed memory computing to solve the above challenges. In the solution, according to business logic and hardware configuration of cluster nodes, the data deployment strategy can be established. Then, the deployment scheme can be implemented with interface operation. Lastly, cluster nodes load data according to the deployment scheme. The solution has been applied to the Objectification Parallel Computing (OPC). The application result shows that OPC can achieve the best performance which can meet the demand of system efficiency and the operation of data deployment is simple. |
|---|---|
| AbstractList | In the Big Data computing, improving performance with memory computing is one of hot spots. In the memory computing, the data deployment directly affects load balance and task efficiency. In the scene of memory computing of electric power data, two unsolved problems are: (1) only memory space, without the CPU frequency and nuclear number, could be considered for load balance and improving performance, (2) there are so many manual operations that it is difficult to complete data deployment automatically. This paper provides an electric power data deployment solution for distributed memory computing to solve the above challenges. In the solution, according to business logic and hardware configuration of cluster nodes, the data deployment strategy can be established. Then, the deployment scheme can be implemented with interface operation. Lastly, cluster nodes load data according to the deployment scheme. The solution has been applied to the Objectification Parallel Computing (OPC). The application result shows that OPC can achieve the best performance which can meet the demand of system efficiency and the operation of data deployment is simple. |
| Author | Zhi Yang Chunping Zhang Feng Lin Mu Hu |
| Author_xml | – sequence: 1 surname: Zhi Yang fullname: Zhi Yang email: yangzhi1@sgepri.sgcc.com.cn organization: State Grid Electr. Power Sci. Res. Inst., Nanjing, China – sequence: 2 surname: Chunping Zhang fullname: Chunping Zhang organization: State Grid Electr. Power Sci. Res. Inst., Nanjing, China – sequence: 3 surname: Mu Hu fullname: Mu Hu organization: State Grid Electr. Power Sci. Res. Inst., Nanjing, China – sequence: 4 surname: Feng Lin fullname: Feng Lin organization: State Grid Electr. Power Sci. Res. Inst., Nanjing, China |
| BookMark | eNotj09LwzAcQCNMcJu7efOSL9CZX5Lmz7GumwqTFdTzyNJfR6RtRpsh-_YO9PQujwdvRiZ97JGQB2BLAGafqqKolpxBvhTmhsxAKi0sgJYTMuWgTCaY5HdkMY7fjDEBxhrFpmRX9HTdok9D8LSKPzjQ53CkpUuOlnhq46XDPtGP2J5TiD1t4kDLMF71wzlhTd-xi8OFrmJ3ugr98Z7cNq4dcfHPOfnarD9Xr9l29_K2KrZZ4MykzIHwjusm59riIffMK2FztIxzkLb2Br1slG9ybWsNXDIUzjYqN5IrXVsQc_L41w2IuD8NoXPDZa-F0dc18QtjDU7a |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/PAAP.2015.38 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Business |
| EISBN | 1467391174 9781467391160 1467391166 9781467391177 |
| EndPage | 161 |
| ExternalDocumentID | 7387318 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i208t-a13ca27f5279eb5c0c6395e9022149dc8ec4f6cf579d71240e3a9f6584267d913 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380466400027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-3042 |
| IngestDate | Wed Aug 27 02:37:42 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i208t-a13ca27f5279eb5c0c6395e9022149dc8ec4f6cf579d71240e3a9f6584267d913 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_7387318 |
| PublicationCentury | 2000 |
| PublicationDate | 20151201 |
| PublicationDateYYYYMMDD | 2015-12-01 |
| PublicationDate_xml | – month: 12 year: 2015 text: 20151201 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings (International Symposium on Parallel Architectures, Algorithms and Programming. Print) |
| PublicationTitleAbbrev | PAAP |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003189860 ssib026765055 |
| Score | 1.5907652 |
| Snippet | In the Big Data computing, improving performance with memory computing is one of hot spots. In the memory computing, the data deployment directly affects load... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 155 |
| SubjectTerms | Big data Business Data Deployment strategy Distributed databases Distributed Memory Computing Hardware Objectification Parallel Computing Parallel processing Power systems |
| Title | An Electric Power Big Data Deployment Solution for Distributed Memory Computing |
| URI | https://ieeexplore.ieee.org/document/7387318 |
| WOSCitedRecordID | wos000380466400027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED21FUJMhbaIb3lgJG0SN_4YC23FQskAUrfKsc8oS4pKisS_x07SwsDCFkVRHJ0d3zv7PT-AW2ky5BQzV5YwE4x1FAeSCgyscFOj5YoJWptN8MVCLJcybcHdXguDiBX5DIf-strLN2u99UtlI04Fd2OwDW3OWa3V2o2dmHGHNRqNpZ-F3XNSVCLhOGIi8FX7nvcuR-lkknpeVzL0wpRfvipVWpl3__dBxzD40eeRdJ95TqCFRQ8Odxz2HnR3Xg2k-XX78DwpyKyyvMk1Sb01GrnP38hUlYpM0bv--qbIbpWMOCxLpv5QXe-HhYY8eUbuF6lf7BodwOt89vLwGDRmCkEeh6IMVES1irlNYi4xS3SoHTZJULoc7ookowXqsWXaJlwa7pJ-iFRJ6_GJC62RET2FTrEu8AyIQ4gamZIcKY6ZTTKr4tCEUrvqKxYqOYe-D9XqvT4vY9VE6eLv25dw5DuipohcQafcbPEaDvRnmX9sbqpO_gZXbaS- |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VgoAJaIv4xgMjaRPnw_ZYaKsi2pKhSN0qx7mgLCkqKRL_HjsfhYGFLYqiODo7vnf2e34AdyKOkLkY6bIkiC1POdQSLkcr4XpqTJgMuFuaTbDZjC8WImzA_VYLg4gF-Qy75rLYy49XamOWynrM5UyPwR3Y9T2P2qVaqx49NGAabVQqSzMP6ycFL2TC1Am4Zer2LfNd9MJ-PzTMLr9rpCm_nFWKxDI6-t8nHUPnR6FHwm3uOYEGZi3Yr1nsLTiq3RpI9fO24aWfkWFhepMqEhpzNPKQvpGBzCUZoPH9NU2Rep2MaDRLBuZYXeOIhTGZGk7uFylfrBvtwOtoOH8cW5WdgpVSm-eWdFwlKUt8ygRGvrKVRic-Cp3FdZkUK47KSwKV-EzETKd9G10pEoNQdGhj4bin0MxWGZ4B0RhRYSAFQxe9IPGjRFI7toXS9Rfl0j-HtgnV8r08MWNZReni79u3cDCeTyfLydPs-RIOTaeUhJEraObrDV7DnvrM04_1TdHh3xspqAU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Parallel+Architectures%2C+Algorithms+and+Programming.+Print%29&rft.atitle=An+Electric+Power+Big+Data+Deployment+Solution+for+Distributed+Memory+Computing&rft.au=Zhi+Yang&rft.au=Chunping+Zhang&rft.au=Mu+Hu&rft.au=Feng+Lin&rft.date=2015-12-01&rft.pub=IEEE&rft.issn=2168-3042&rft.spage=155&rft.epage=161&rft_id=info:doi/10.1109%2FPAAP.2015.38&rft.externalDocID=7387318 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-3042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-3042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-3042&client=summon |