An Electric Power Big Data Deployment Solution for Distributed Memory Computing

In the Big Data computing, improving performance with memory computing is one of hot spots. In the memory computing, the data deployment directly affects load balance and task efficiency. In the scene of memory computing of electric power data, two unsolved problems are: (1) only memory space, witho...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings (International Symposium on Parallel Architectures, Algorithms and Programming. Print) s. 155 - 161
Hlavní autori: Zhi Yang, Chunping Zhang, Mu Hu, Feng Lin
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.12.2015
Predmet:
ISSN:2168-3042
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the Big Data computing, improving performance with memory computing is one of hot spots. In the memory computing, the data deployment directly affects load balance and task efficiency. In the scene of memory computing of electric power data, two unsolved problems are: (1) only memory space, without the CPU frequency and nuclear number, could be considered for load balance and improving performance, (2) there are so many manual operations that it is difficult to complete data deployment automatically. This paper provides an electric power data deployment solution for distributed memory computing to solve the above challenges. In the solution, according to business logic and hardware configuration of cluster nodes, the data deployment strategy can be established. Then, the deployment scheme can be implemented with interface operation. Lastly, cluster nodes load data according to the deployment scheme. The solution has been applied to the Objectification Parallel Computing (OPC). The application result shows that OPC can achieve the best performance which can meet the demand of system efficiency and the operation of data deployment is simple.
AbstractList In the Big Data computing, improving performance with memory computing is one of hot spots. In the memory computing, the data deployment directly affects load balance and task efficiency. In the scene of memory computing of electric power data, two unsolved problems are: (1) only memory space, without the CPU frequency and nuclear number, could be considered for load balance and improving performance, (2) there are so many manual operations that it is difficult to complete data deployment automatically. This paper provides an electric power data deployment solution for distributed memory computing to solve the above challenges. In the solution, according to business logic and hardware configuration of cluster nodes, the data deployment strategy can be established. Then, the deployment scheme can be implemented with interface operation. Lastly, cluster nodes load data according to the deployment scheme. The solution has been applied to the Objectification Parallel Computing (OPC). The application result shows that OPC can achieve the best performance which can meet the demand of system efficiency and the operation of data deployment is simple.
Author Zhi Yang
Chunping Zhang
Feng Lin
Mu Hu
Author_xml – sequence: 1
  surname: Zhi Yang
  fullname: Zhi Yang
  email: yangzhi1@sgepri.sgcc.com.cn
  organization: State Grid Electr. Power Sci. Res. Inst., Nanjing, China
– sequence: 2
  surname: Chunping Zhang
  fullname: Chunping Zhang
  organization: State Grid Electr. Power Sci. Res. Inst., Nanjing, China
– sequence: 3
  surname: Mu Hu
  fullname: Mu Hu
  organization: State Grid Electr. Power Sci. Res. Inst., Nanjing, China
– sequence: 4
  surname: Feng Lin
  fullname: Feng Lin
  organization: State Grid Electr. Power Sci. Res. Inst., Nanjing, China
BookMark eNotj09LwzAcQCNMcJu7efOSL9CZX5Lmz7GumwqTFdTzyNJfR6RtRpsh-_YO9PQujwdvRiZ97JGQB2BLAGafqqKolpxBvhTmhsxAKi0sgJYTMuWgTCaY5HdkMY7fjDEBxhrFpmRX9HTdok9D8LSKPzjQ53CkpUuOlnhq46XDPtGP2J5TiD1t4kDLMF71wzlhTd-xi8OFrmJ3ugr98Z7cNq4dcfHPOfnarD9Xr9l29_K2KrZZ4MykzIHwjusm59riIffMK2FztIxzkLb2Br1slG9ybWsNXDIUzjYqN5IrXVsQc_L41w2IuD8NoXPDZa-F0dc18QtjDU7a
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PAAP.2015.38
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Business
EISBN 1467391174
9781467391160
1467391166
9781467391177
EndPage 161
ExternalDocumentID 7387318
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i208t-a13ca27f5279eb5c0c6395e9022149dc8ec4f6cf579d71240e3a9f6584267d913
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380466400027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-3042
IngestDate Wed Aug 27 02:37:42 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-a13ca27f5279eb5c0c6395e9022149dc8ec4f6cf579d71240e3a9f6584267d913
PageCount 7
ParticipantIDs ieee_primary_7387318
PublicationCentury 2000
PublicationDate 20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 20151201
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings (International Symposium on Parallel Architectures, Algorithms and Programming. Print)
PublicationTitleAbbrev PAAP
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003189860
ssib026765055
Score 1.5907652
Snippet In the Big Data computing, improving performance with memory computing is one of hot spots. In the memory computing, the data deployment directly affects load...
SourceID ieee
SourceType Publisher
StartPage 155
SubjectTerms Big data
Business
Data Deployment strategy
Distributed databases
Distributed Memory Computing
Hardware
Objectification Parallel Computing
Parallel processing
Power systems
Title An Electric Power Big Data Deployment Solution for Distributed Memory Computing
URI https://ieeexplore.ieee.org/document/7387318
WOSCitedRecordID wos000380466400027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED21FUJMhbaIb3lgJG0SN_4YC23FQskAUrfKsc8oS4pKisS_x07SwsDCFkVRHJ0d3zv7PT-AW2ky5BQzV5YwE4x1FAeSCgyscFOj5YoJWptN8MVCLJcybcHdXguDiBX5DIf-strLN2u99UtlI04Fd2OwDW3OWa3V2o2dmHGHNRqNpZ-F3XNSVCLhOGIi8FX7nvcuR-lkknpeVzL0wpRfvipVWpl3__dBxzD40eeRdJ95TqCFRQ8Odxz2HnR3Xg2k-XX78DwpyKyyvMk1Sb01GrnP38hUlYpM0bv--qbIbpWMOCxLpv5QXe-HhYY8eUbuF6lf7BodwOt89vLwGDRmCkEeh6IMVES1irlNYi4xS3SoHTZJULoc7ookowXqsWXaJlwa7pJ-iFRJ6_GJC62RET2FTrEu8AyIQ4gamZIcKY6ZTTKr4tCEUrvqKxYqOYe-D9XqvT4vY9VE6eLv25dw5DuipohcQafcbPEaDvRnmX9sbqpO_gZXbaS-
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VgoAJaIv4xgMjaRPnw_ZYaKsi2pKhSN0qx7mgLCkqKRL_HjsfhYGFLYqiODo7vnf2e34AdyKOkLkY6bIkiC1POdQSLkcr4XpqTJgMuFuaTbDZjC8WImzA_VYLg4gF-Qy75rLYy49XamOWynrM5UyPwR3Y9T2P2qVaqx49NGAabVQqSzMP6ycFL2TC1Am4Zer2LfNd9MJ-PzTMLr9rpCm_nFWKxDI6-t8nHUPnR6FHwm3uOYEGZi3Yr1nsLTiq3RpI9fO24aWfkWFhepMqEhpzNPKQvpGBzCUZoPH9NU2Rep2MaDRLBuZYXeOIhTGZGk7uFylfrBvtwOtoOH8cW5WdgpVSm-eWdFwlKUt8ygRGvrKVRic-Cp3FdZkUK47KSwKV-EzETKd9G10pEoNQdGhj4bin0MxWGZ4B0RhRYSAFQxe9IPGjRFI7toXS9Rfl0j-HtgnV8r08MWNZReni79u3cDCeTyfLydPs-RIOTaeUhJEraObrDV7DnvrM04_1TdHh3xspqAU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Parallel+Architectures%2C+Algorithms+and+Programming.+Print%29&rft.atitle=An+Electric+Power+Big+Data+Deployment+Solution+for+Distributed+Memory+Computing&rft.au=Zhi+Yang&rft.au=Chunping+Zhang&rft.au=Mu+Hu&rft.au=Feng+Lin&rft.date=2015-12-01&rft.pub=IEEE&rft.issn=2168-3042&rft.spage=155&rft.epage=161&rft_id=info:doi/10.1109%2FPAAP.2015.38&rft.externalDocID=7387318
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-3042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-3042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-3042&client=summon