Adaptive marginalized stacked denoising autoencoders and its application
In this paper, we propose a modified marginalized autoencoders. Here, the noise adding way at a fixed rate in marginalized autoencoders is replaced by the adaptive noise injection. Compared with the traditional marginalized autoencoders, the proposed method obviously enlarges the recognition perform...
Uloženo v:
| Vydáno v: | Chinese Control Conference s. 4107 - 4112 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
TCCT
01.07.2016
|
| Témata: | |
| ISSN: | 1934-1768 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we propose a modified marginalized autoencoders. Here, the noise adding way at a fixed rate in marginalized autoencoders is replaced by the adaptive noise injection. Compared with the traditional marginalized autoencoders, the proposed method obviously enlarges the recognition performance. Furthermore, the proposed method is applied to identify high-speed train wheel wear conditions. Features of high speed train wheels wear vibration signals are abstracted by using the adaptive noise marginalized autoencoders, and the features is used to realize the wheel wear characteristics of vibration signal recognitions as the input of support vector machine (SVM). The experimental results show that the accuracy of the new method for identifying high-speed train wheel wear conditions is 99.8% on average. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| ISSN: | 1934-1768 |
| DOI: | 10.1109/ChiCC.2016.7553994 |