Regularized stochastic BFGS algorithm
A regularized stochastic version of the Broyden-Fletcher- Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve optimization problems with stochastic objectives that arise in large scale machine learning. Stochastic gradient descent is the currently preferred solution methodology but the n...
Saved in:
| Published in: | 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP) pp. 1109 - 1112 |
|---|---|
| Main Authors: | , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.12.2013
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A regularized stochastic version of the Broyden-Fletcher- Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve optimization problems with stochastic objectives that arise in large scale machine learning. Stochastic gradient descent is the currently preferred solution methodology but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. This paper utilizes stochastic gradient differences and introduces a regularization to ensure that the Hessian approximation matrix remains well conditioned. The resulting regularized stochastic BFGS method is shown to converge to optimal arguments almost surely over realizations of the stochastic gradient sequence. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. |
|---|---|
| AbstractList | A regularized stochastic version of the Broyden-Fletcher- Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve optimization problems with stochastic objectives that arise in large scale machine learning. Stochastic gradient descent is the currently preferred solution methodology but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. This paper utilizes stochastic gradient differences and introduces a regularization to ensure that the Hessian approximation matrix remains well conditioned. The resulting regularized stochastic BFGS method is shown to converge to optimal arguments almost surely over realizations of the stochastic gradient sequence. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. |
| Author | Mokhtari, Aryan Ribeiro, Alejandro |
| Author_xml | – sequence: 1 givenname: Aryan surname: Mokhtari fullname: Mokhtari, Aryan email: aryanm@seas.upenn.edu organization: Dept. of Electr. & Syst. Eng., Univ. of Pennsylvania, Philadelphia, PA, USA – sequence: 2 givenname: Alejandro surname: Ribeiro fullname: Ribeiro, Alejandro email: aribeiro@seas.upenn.edu organization: Dept. of Electr. & Syst. Eng., Univ. of Pennsylvania, Philadelphia, PA, USA |
| BookMark | eNotz0FLwzAYgOEICrq5XyBILx5b8yVtvi9HHa4OBhtOzyNJky2SrdLUg_56D-703h54J-zy1J88Y_fAKwCuH9vUW5O2y00lOMhKoUROdMEmUKPWXNSkr9ks50_OOSACNuqGPbz5_XcyQ_z1XZHH3h1MHqMrnhfttjBp3w9xPBxv2VUwKfvZuVP2sXh5n7-Wq3W7nD-tyig4jSV2qOvOubprUBhrrJXgCVyjSLkgoBNKKCJFzkITTBCktbXcK41IgYKcsrt_N3rvd19DPJrhZ3c-kX8FvkG2 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/GlobalSIP.2013.6737088 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1479902489 9781479902484 |
| EndPage | 1112 |
| ExternalDocumentID | 6737088 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i208t-7d794dcc4d572ababb31e81c5686cf21d26268868cb15faf2899bb0e69778f8f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350825600292&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 04:20:19 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i208t-7d794dcc4d572ababb31e81c5686cf21d26268868cb15faf2899bb0e69778f8f3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_6737088 |
| PublicationCentury | 2000 |
| PublicationDate | 20131201 |
| PublicationDateYYYYMMDD | 2013-12-01 |
| PublicationDate_xml | – month: 12 year: 2013 text: 20131201 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP) |
| PublicationTitleAbbrev | GlobalSIP |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001771756 |
| Score | 1.559588 |
| Snippet | A regularized stochastic version of the Broyden-Fletcher- Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve optimization problems with stochastic... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1109 |
| SubjectTerms | Approximation algorithms Approximation methods Convergence Eigenvalues and eigenfunctions Linear programming Machine learning algorithms Vectors |
| Title | Regularized stochastic BFGS algorithm |
| URI | https://ieeexplore.ieee.org/document/6737088 |
| WOSCitedRecordID | wos000350825600292&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4sGTSiu-2YPe3Db7SmavilVBymIVeivJJGsLultq68Ffb7K7tAhevIVACJMwzHwz880AXGphJDpGD08o8mNC7iutlE9M8yQgRjFVP_0kRiOcTNKsBdcbLowxpio-M323rHL5uqS1C5UN3EwVqxVtaAvBa67WNp4iLDBJeEMCDlg6qJvmjx8zV8AV9ZvDv6aoVEZkuPe_6_eht2XjednGzhxAyxRduHquhsgv599Ge9aBo5l0HZe9m-H92JPvb6UF_bOPHrwO715uH_xm5IE_DxmufKGtfmiiWCcilEoqFQUGA0o4csrDQIcWgCByJBUkucwdXFKKGW7dOMwxjw6hU5SFOQLPIiNkudCxS7VFLEVMjesnH6VSSpR0DF0n4nRRd7WYNtKd_L19CrvuFetCjjPorJZrcw479LWafy4vqq_4ARu9ihw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfSk0opv96A3t2Yfyc5eFWuLtRRbobeSTLK2oK3U1oO_3mR3aRG8eAuBQCZhmPlm5psBuNSJkegYPYJT5MeEwldaKZ-YFjwgRjHlP91Jul0cDtNeBa5XXBhjTF58Zhpumefy9YyWLlR242aqWK3YgE0exyEr2FrriEpioQkXJQ04YOlN0Ta_3-65Eq6oUR7_NUclNyPN3f9dYA_qaz6e11tZmn2omGkNrp7zMfLzybfRnnXhaCxdz2XvtvnQ9-Tb68zC_vF7HV6a94O7ll8OPfAnIcOFn2irIZoo1jwJpZJKRYHBgLhAQVkY6NBCEESBpAKeycwBJqWYEdaRwwyz6ACq09nUHIJnsRGyLNGxS7ZFLEVMjesoH6VSSpR0BDUn4uij6GsxKqU7_nv7ArZbg6fOqNPuPp7AjnvRoqzjFKqL-dKcwRZ9LSaf8_P8W34AgCeNYw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Global+Conference+on+Signal+and+Information+Processing+%28GlobalSIP%29&rft.atitle=Regularized+stochastic+BFGS+algorithm&rft.au=Mokhtari%2C+Aryan&rft.au=Ribeiro%2C+Alejandro&rft.date=2013-12-01&rft.pub=IEEE&rft.spage=1109&rft.epage=1112&rft_id=info:doi/10.1109%2FGlobalSIP.2013.6737088&rft.externalDocID=6737088 |