Nexus#: A Distributed Hardware Task Manager for Task-Based Programming Models
In the era of multicore systems, it is expected that the number of cores that can be integrated on a single chip will be 3-digit. The key to utilize such a huge computational power is to extract the very fine parallelism in the user program. This is non-trivial for the average programmer, and become...
Uloženo v:
| Vydáno v: | Proceedings - IEEE International Parallel and Distributed Processing Symposium s. 1129 - 1138 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.05.2015
|
| Témata: | |
| ISSN: | 1530-2075 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In the era of multicore systems, it is expected that the number of cores that can be integrated on a single chip will be 3-digit. The key to utilize such a huge computational power is to extract the very fine parallelism in the user program. This is non-trivial for the average programmer, and becomes very hard as the number of potential parallel instances increases. Task-based programming models such as OmpSs are promising, since they handle the detection of dependencies and synchronization for the programmer. However, state-of-the-art research shows that task management is not cheap, and introduces a significant overhead that limits the scalability of OmpSs. Nexus# is a hardware accelerator for the OmpSs runtime system, which dynamically monitors dependencies between tasks. It is fully synthesizable in VHDL, and has a distributed task graph model to achieve the best scalability. Supporting tasks with arbitrary number of parameters and any dependency pattern, Nexus# achieves better performance than Nanos, the official OmpSs runtime system, and scales well for the H264dec benchmark with very fine grained tasks, among other benchmarks from the Starbench suite. |
|---|---|
| ISSN: | 1530-2075 |
| DOI: | 10.1109/IPDPS.2015.79 |