Going deeper with convolutions

We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) S. 1 - 9
Hauptverfasser: Szegedy, Christian, Wei Liu, Yangqing Jia, Sermanet, Pierre, Reed, Scott, Anguelov, Dragomir, Erhan, Dumitru, Vanhoucke, Vincent, Rabinovich, Andrew
Format: Tagungsbericht Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2015
Schlagworte:
ISSN:1063-6919, 1063-6919
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.
AbstractList We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.
Author Yangqing Jia
Rabinovich, Andrew
Reed, Scott
Erhan, Dumitru
Vanhoucke, Vincent
Sermanet, Pierre
Anguelov, Dragomir
Szegedy, Christian
Wei Liu
Author_xml – sequence: 1
  givenname: Christian
  surname: Szegedy
  fullname: Szegedy, Christian
  email: szegedy@google.com
  organization: Google Inc., Mountain View, CA, USA
– sequence: 2
  surname: Wei Liu
  fullname: Wei Liu
  email: wliu@cs.unc.edu
  organization: Univ. of North Carolina, Chapel Hill, NC, USA
– sequence: 3
  surname: Yangqing Jia
  fullname: Yangqing Jia
  email: jiayq@google.com
  organization: Google Inc., Mountain View, CA, USA
– sequence: 4
  givenname: Pierre
  surname: Sermanet
  fullname: Sermanet, Pierre
  email: sermanet@google.com
  organization: Google Inc., Mountain View, CA, USA
– sequence: 5
  givenname: Scott
  surname: Reed
  fullname: Reed, Scott
  email: reedscott@umich.edu
  organization: Univ. of Michigan, Ann Arbor, MI, USA
– sequence: 6
  givenname: Dragomir
  surname: Anguelov
  fullname: Anguelov, Dragomir
  email: dragomir@google.com
  organization: Google Inc., Mountain View, CA, USA
– sequence: 7
  givenname: Dumitru
  surname: Erhan
  fullname: Erhan, Dumitru
  email: dumitru@google.com
  organization: Google Inc., Mountain View, CA, USA
– sequence: 8
  givenname: Vincent
  surname: Vanhoucke
  fullname: Vanhoucke, Vincent
  email: vanhoucke@google.com
  organization: Google Inc., Mountain View, CA, USA
– sequence: 9
  givenname: Andrew
  surname: Rabinovich
  fullname: Rabinovich, Andrew
  email: arabinovich@magicleap.com
  organization: Magic Leap Inc., USA
BookMark eNpNkMFKw0AURUepYFv7ASJIl24S38skM3lLKbUKBUWK25CZvOhAmomZVPHvDbQL4cC9i8Nd3JmYtL5lIa4RYkSg-9X761ucAGaxTijPKD0TM0yVlopUCudiiqBkpAhp8q9fikUIzoAEyIkSmIrbjXftx7Ji7rhf_rjhc2l9--2bw-B8G67ERV02gRennIvd43q3eoq2L5vn1cM2cgnkQ5RlRpq6HpEVGKOtqoxBTE2Z5kiaTZlZrhVWiJas1TSiSNas0ChTybm4O852vf86cBiKvQuWm6Zs2R9CgVqDTAhIj-rNUXXMXHS925f9b3E6Qf4BoPhQBw
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2015.7298594
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1467369640
9781467369640
EISSN 1063-6919
EndPage 9
ExternalDocumentID 7298594
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-55b3bffbff3d0bb7c6dbb114ba48197eba5cef61d11c9cc79c79693fe61b6bd3
IEDL.DBID RIE
ISICitedReferencesCount 19811
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387959200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Thu Sep 04 17:31:40 EDT 2025
Wed Aug 27 02:49:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-55b3bffbff3d0bb7c6dbb114ba48197eba5cef61d11c9cc79c79693fe61b6bd3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1770329097
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1770329097
ieee_primary_7298594
PublicationCentury 2000
PublicationDate 20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150601
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib030089920
ssj0023720
ssj0003211698
Score 2.5811744
Snippet We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Architecture (computers)
Classification
Computation
Computer architecture
Computer vision
Conferences
Constants
Convolutional codes
Networks
Neural networks
Object detection
Pattern recognition
Sparse matrices
Visualization
Title Going deeper with convolutions
URI https://ieeexplore.ieee.org/document/7298594
https://www.proquest.com/docview/1770329097
WOSCitedRecordID wos000387959200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8MwDBZt2WGnbmvHukfJYMeljePYjs9l3Q6jlFFKbyF2bOglKX39_lmp0x22y8AHIzCxLUWW_EkWwEtqlZBxhGVSCQuTIpaI75rQcqpyq1Jm65eYlp9iNktXKzlvwes5F8YYUwefmRF2ayy_qPQBr8rGzhBMmUza0BaCn3K1GtmhEeJX3vRBLUydZ8PlGVGIsRpLjXxyGnJJpEc4SSTHk-X8C4O82Mh_wFda-aWe6zNn2v3fbK-g_5O8F8zPx9I1tEx5A11vbQb-X945UlPQoaH1YPheuSFBYczGkfGKNsCo9EY6-7CYvi0mH6EvoBCu4yjdh4wpqqx1jRaRUkLzQinnAKk8cYaAMCpn2lhOCkK01FpI17ik1nCiuCroLXTKqjR3EBAdO76h95M7lyrKpU3QE2G5sw7dOtUAergB2eb0REbm1z6A52YHMye2iEXkpakOu4wIp2piGUlx__fQB7hElpyish6hs98ezBNc6ON-vdsOa95_A93qqiA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNNETKhjxB87Eo4N2Xbv1TESMSIghhNuydm3CZSMw_PttR4cHvZj0sLyk2dq-vX6v33t9AE-xFhEPkC2TiqkfZgG3_K7yNSMi1SKmurqJaTGJptN4ueSzBjwfcmGUUlXwmerbx4rLzwq5s0dlAwMEY8rDIzimYRigfbZWrT0EWQbLgR9rh4nxbRg_cAqBrcdScZ-M-Ixj7jhOjPhguJh92jAv2nevcLVWfhnoatcZtf73vefQ-Unf82aHjekCGiq_hJbDm577m7dGVJd0qGVt6L0WpouXKbU2YntI69m49Fo_OzAfvcyHY9-VUPBXAYpLn1JBhNamkQwJEUmWCWFcIJGGBgpESqRUKs1whrHkUkbcNMaJVgwLJjJyBc28yNU1eFgGZuWs_5MapwqlXIfWF6GpwYdmnKILbTsByXp_SUbixt6Fx3oGE6O4lo1Ic1XstgmOjLEJOOLRzd9dH-B0PP-YJJO36fstnNnl2cdo3UGz3OzUPZzIr3K13fQqPfgG6h2tZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2015+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Going+deeper+with+convolutions&rft.au=Szegedy%2C+Christian&rft.au=Wei+Liu&rft.au=Yangqing+Jia&rft.au=Sermanet%2C+Pierre&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FCVPR.2015.7298594&rft.externalDocID=7298594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon