Small-variance nonparametric clustering on the hypersphere

Structural regularities in man-made environments reflect in the distribution of their surface normals. Describing these surface normal distributions is important in many computer vision applications, such as scene understanding, plane segmentation, and regularization of 3D reconstructions. Based on...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) s. 334 - 342
Hlavní autoři: Straub, Julian, Campbell, Trevor, How, Jonathan P., Fisher, John W.
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.06.2015
Témata:
ISSN:1063-6919, 1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Structural regularities in man-made environments reflect in the distribution of their surface normals. Describing these surface normal distributions is important in many computer vision applications, such as scene understanding, plane segmentation, and regularization of 3D reconstructions. Based on the small-variance limit of Bayesian nonparametric von-Mises-Fisher (vMF) mixture distributions, we propose two new flexible and efficient k-means-like clustering algorithms for directional data such as surface normals. The first, DP-vMF-means, is a batch clustering algorithm derived from the Dirichlet process (DP) vMF mixture. Recognizing the sequential nature of data collection in many applications, we extend this algorithm to DDP-vMF-means, which infers temporally evolving cluster structure from streaming data. Both algorithms naturally respect the geometry of directional data, which lies on the unit sphere. We demonstrate their performance on synthetic directional data and real 3D surface normals from RGB-D sensors. While our experiments focus on 3D data, both algorithms generalize to high dimensional directional data such as protein backbone configurations and semantic word vectors.
AbstractList Structural regularities in man-made environments reflect in the distribution of their surface normals. Describing these surface normal distributions is important in many computer vision applications, such as scene understanding, plane segmentation, and regularization of 3D reconstructions. Based on the small-variance limit of Bayesian nonparametric von-Mises-Fisher (vMF) mixture distributions, we propose two new flexible and efficient k-means-like clustering algorithms for directional data such as surface normals. The first, DP-vMF-means, is a batch clustering algorithm derived from the Dirichlet process (DP) vMF mixture. Recognizing the sequential nature of data collection in many applications, we extend this algorithm to DDP-vMF-means, which infers temporally evolving cluster structure from streaming data. Both algorithms naturally respect the geometry of directional data, which lies on the unit sphere. We demonstrate their performance on synthetic directional data and real 3D surface normals from RGB-D sensors. While our experiments focus on 3D data, both algorithms generalize to high dimensional directional data such as protein backbone configurations and semantic word vectors.
Author Campbell, Trevor
Fisher, John W.
How, Jonathan P.
Straub, Julian
Author_xml – sequence: 1
  givenname: Julian
  surname: Straub
  fullname: Straub, Julian
  email: jstraub@csail.mit.edu
  organization: CSAIL and LIDS, Massachusetts Institute of Technology, USA
– sequence: 2
  givenname: Trevor
  surname: Campbell
  fullname: Campbell, Trevor
  email: fisher@csail.mit.edu
  organization: CSAIL and LIDS, Massachusetts Institute of Technology, USA
– sequence: 3
  givenname: Jonathan P.
  surname: How
  fullname: How, Jonathan P.
  email: tdjc@.mit.edu
  organization: CSAIL and LIDS, Massachusetts Institute of Technology, USA
– sequence: 4
  givenname: John W.
  surname: Fisher
  fullname: Fisher, John W.
  email: jhow@.mit.edu
  organization: CSAIL and LIDS, Massachusetts Institute of Technology, USA
BookMark eNpNUEtLxDAYjLKCu3V_gHjp0Uvrl0fTxJsUX7Cg-LqWtP3iBvoyaYX99y7sHoSBmcMww8yKLPqhR0IuKaSUgr4pvl7fUgY0S3OmleRwQlZUyJxLLQWckiUFyROpqV780-dkHYKrgAMorRksye17Z9o2-TXemb7GeF8zGm86nLyr47qdw4Te9d_x0MfTFuPtbkQfxi16vCBn1rQB10eOyOfD_UfxlGxeHp-Lu03iGKgpyYQF2nCL1mSNYlxVVBiwUihR72Froa1UVqOFprISOWSomRFUGcBKSx6R60Pu6IefGcNUdi7U2Lamx2EOJc1z4Jxl-_ERuTpYHSKWo3ed8bvy-BD_A8iBWjc
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2015.7298630
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1467369640
9781467369640
EISSN 1063-6919
EndPage 342
ExternalDocumentID 7298630
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-54f01d3fefa5d8238b14a0f6484c84cfc49f68f9ef0dbf6e305e92a418a0eb963
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387959200037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Thu Sep 04 19:39:27 EDT 2025
Wed Aug 20 06:20:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-54f01d3fefa5d8238b14a0f6484c84cfc49f68f9ef0dbf6e305e92a418a0eb963
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1770332567
PQPubID 23500
PageCount 9
ParticipantIDs ieee_primary_7298630
proquest_miscellaneous_1770332567
PublicationCentury 2000
PublicationDate 20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150601
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib030089920
ssj0023720
ssj0003211698
Score 2.0786283
Snippet Structural regularities in man-made environments reflect in the distribution of their surface normals. Describing these surface normal distributions is...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 334
SubjectTerms Algorithms
Backbone
Clustering
Clustering algorithms
Computer vision
Data models
Dirichlet problem
Hidden Markov models
Inference algorithms
Mixture models
Pattern recognition
Reconstruction
Shape
Surface reconstruction
Surface treatment
Three dimensional
Three-dimensional displays
Vectors
Title Small-variance nonparametric clustering on the hypersphere
URI https://ieeexplore.ieee.org/document/7298630
https://www.proquest.com/docview/1770332567
WOSCitedRecordID wos000387959200037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-QePCECsbvzMSjg27tttYrkXgixK9wW7r2NZLAMMD4-30dHR70YrLD0qRb8_r6Pvo-foTcM6ENNSwLFS8yd1sVh0oUNIxNlmgTMSNA12AT2XgsplM5aZGHfS0MANTJZ9B3r3Us3yx15a7KBmgIipShg36QZemuVqvhHUZd_MqbPk4KM_RsUrmPKMQOjaWOfKYsTGUkfYQzonIw_Ji8uCSvpO9_4JFWfonnWueMOv9b7THp_RTvBZO9WjohLShPScdbm4E_y2scagAdmrEueXxdqPk83KL_7JghKJelaw2-cKhbOtDzynVVwI8GyzJAwzH4RCcW_WLcduiR99HT2_A59OAK4SymYhMm3NLIMAtWJUag4i4irqhNueAaH6u5tKmwEiw1hU0B5QLIWPFIKAoFHtsz0sZVwDkJACLX48ZQ1_qdGZCCGcbRNIOEKTD8gnQddfKvXf-M3BPmgtw15M2Rp12gQpWwrNZ5lKEcYmiMZZd_T70iR26_dilb16S9WVVwQw71djNbr25rxvgGYBi1Rg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yBX3yNnFeK_hoNW3SNvF1OCbqGN7YW0mTExxsrbh1v9-Trp0P-iL0oQTShpOTc8m5fIRcMqENNSzxFc8Sd1sV-kpk1A9NEmkTMCNAV2ATyWAgRiM5XCNXq1oYAKiSz-DavVaxfFPo0l2V3aAhKGKGDvp6xHlIl9VaDfcw6iJYtfHj5DBD3yaWq5hC6PBYqthnzPxYBrKOcQZU3nTfh88uzSu6rn9RY638EtCV1ult_2-9O6T9U77nDVeKaZesQb5Htmt706tP8wyHGkiHZmyf3L5M1WTiL9CDduzg5UXumoNPHe6W9vSkdH0V8KNekXtoOnof6MaiZ4wbD23y1rt77fb9Gl7BH4dUzP2IWxoYZsGqyAhU3VnAFbUxF1zjYzWXNhZWgqUmszGgZAAZKh4IRSHDg3tAWrgKOCQeQOC63Bjqmr8zA1IwwzgaZxAxBYZ3yL6jTvq57KCR1oTpkIuGvClytQtVqByKcpYGCUoihuZYcvT31HOy2X99ekwf7wcPx2TL7d0ygeuEtOZfJZySDb2Yj2dfZxWTfAP9friN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2015+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Small-variance+nonparametric+clustering+on+the+hypersphere&rft.au=Straub%2C+Julian&rft.au=Campbell%2C+Trevor&rft.au=How%2C+Jonathan+P.&rft.au=Fisher%2C+John+W.&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=334&rft.epage=342&rft_id=info:doi/10.1109%2FCVPR.2015.7298630&rft.externalDocID=7298630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon