Small-variance nonparametric clustering on the hypersphere
Structural regularities in man-made environments reflect in the distribution of their surface normals. Describing these surface normal distributions is important in many computer vision applications, such as scene understanding, plane segmentation, and regularization of 3D reconstructions. Based on...
Uloženo v:
| Vydáno v: | 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) s. 334 - 342 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2015
|
| Témata: | |
| ISSN: | 1063-6919, 1063-6919 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Structural regularities in man-made environments reflect in the distribution of their surface normals. Describing these surface normal distributions is important in many computer vision applications, such as scene understanding, plane segmentation, and regularization of 3D reconstructions. Based on the small-variance limit of Bayesian nonparametric von-Mises-Fisher (vMF) mixture distributions, we propose two new flexible and efficient k-means-like clustering algorithms for directional data such as surface normals. The first, DP-vMF-means, is a batch clustering algorithm derived from the Dirichlet process (DP) vMF mixture. Recognizing the sequential nature of data collection in many applications, we extend this algorithm to DDP-vMF-means, which infers temporally evolving cluster structure from streaming data. Both algorithms naturally respect the geometry of directional data, which lies on the unit sphere. We demonstrate their performance on synthetic directional data and real 3D surface normals from RGB-D sensors. While our experiments focus on 3D data, both algorithms generalize to high dimensional directional data such as protein backbone configurations and semantic word vectors. |
|---|---|
| AbstractList | Structural regularities in man-made environments reflect in the distribution of their surface normals. Describing these surface normal distributions is important in many computer vision applications, such as scene understanding, plane segmentation, and regularization of 3D reconstructions. Based on the small-variance limit of Bayesian nonparametric von-Mises-Fisher (vMF) mixture distributions, we propose two new flexible and efficient k-means-like clustering algorithms for directional data such as surface normals. The first, DP-vMF-means, is a batch clustering algorithm derived from the Dirichlet process (DP) vMF mixture. Recognizing the sequential nature of data collection in many applications, we extend this algorithm to DDP-vMF-means, which infers temporally evolving cluster structure from streaming data. Both algorithms naturally respect the geometry of directional data, which lies on the unit sphere. We demonstrate their performance on synthetic directional data and real 3D surface normals from RGB-D sensors. While our experiments focus on 3D data, both algorithms generalize to high dimensional directional data such as protein backbone configurations and semantic word vectors. |
| Author | Campbell, Trevor Fisher, John W. How, Jonathan P. Straub, Julian |
| Author_xml | – sequence: 1 givenname: Julian surname: Straub fullname: Straub, Julian email: jstraub@csail.mit.edu organization: CSAIL and LIDS, Massachusetts Institute of Technology, USA – sequence: 2 givenname: Trevor surname: Campbell fullname: Campbell, Trevor email: fisher@csail.mit.edu organization: CSAIL and LIDS, Massachusetts Institute of Technology, USA – sequence: 3 givenname: Jonathan P. surname: How fullname: How, Jonathan P. email: tdjc@.mit.edu organization: CSAIL and LIDS, Massachusetts Institute of Technology, USA – sequence: 4 givenname: John W. surname: Fisher fullname: Fisher, John W. email: jhow@.mit.edu organization: CSAIL and LIDS, Massachusetts Institute of Technology, USA |
| BookMark | eNpNUEtLxDAYjLKCu3V_gHjp0Uvrl0fTxJsUX7Cg-LqWtP3iBvoyaYX99y7sHoSBmcMww8yKLPqhR0IuKaSUgr4pvl7fUgY0S3OmleRwQlZUyJxLLQWckiUFyROpqV780-dkHYKrgAMorRksye17Z9o2-TXemb7GeF8zGm86nLyr47qdw4Te9d_x0MfTFuPtbkQfxi16vCBn1rQB10eOyOfD_UfxlGxeHp-Lu03iGKgpyYQF2nCL1mSNYlxVVBiwUihR72Froa1UVqOFprISOWSomRFUGcBKSx6R60Pu6IefGcNUdi7U2Lamx2EOJc1z4Jxl-_ERuTpYHSKWo3ed8bvy-BD_A8iBWjc |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/CVPR.2015.7298630 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISBN | 1467369640 9781467369640 |
| EISSN | 1063-6919 |
| EndPage | 342 |
| ExternalDocumentID | 7298630 |
| Genre | orig-research |
| GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-i208t-54f01d3fefa5d8238b14a0f6484c84cfc49f68f9ef0dbf6e305e92a418a0eb963 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387959200037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6919 |
| IngestDate | Thu Sep 04 19:39:27 EDT 2025 Wed Aug 20 06:20:47 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i208t-54f01d3fefa5d8238b14a0f6484c84cfc49f68f9ef0dbf6e305e92a418a0eb963 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| PQID | 1770332567 |
| PQPubID | 23500 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_7298630 proquest_miscellaneous_1770332567 |
| PublicationCentury | 2000 |
| PublicationDate | 20150601 |
| PublicationDateYYYYMMDD | 2015-06-01 |
| PublicationDate_xml | – month: 06 year: 2015 text: 20150601 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib030089920 ssj0023720 ssj0003211698 |
| Score | 2.0786283 |
| Snippet | Structural regularities in man-made environments reflect in the distribution of their surface normals. Describing these surface normal distributions is... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 334 |
| SubjectTerms | Algorithms Backbone Clustering Clustering algorithms Computer vision Data models Dirichlet problem Hidden Markov models Inference algorithms Mixture models Pattern recognition Reconstruction Shape Surface reconstruction Surface treatment Three dimensional Three-dimensional displays Vectors |
| Title | Small-variance nonparametric clustering on the hypersphere |
| URI | https://ieeexplore.ieee.org/document/7298630 https://www.proquest.com/docview/1770332567 |
| WOSCitedRecordID | wos000387959200037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-QePCECsbvzMSjg27tttYrkXgixK9wW7r2NZLAMMD4-30dHR70YrLD0qRb8_r6Pvo-foTcM6ENNSwLFS8yd1sVh0oUNIxNlmgTMSNA12AT2XgsplM5aZGHfS0MANTJZ9B3r3Us3yx15a7KBmgIipShg36QZemuVqvhHUZd_MqbPk4KM_RsUrmPKMQOjaWOfKYsTGUkfYQzonIw_Ji8uCSvpO9_4JFWfonnWueMOv9b7THp_RTvBZO9WjohLShPScdbm4E_y2scagAdmrEueXxdqPk83KL_7JghKJelaw2-cKhbOtDzynVVwI8GyzJAwzH4RCcW_WLcduiR99HT2_A59OAK4SymYhMm3NLIMAtWJUag4i4irqhNueAaH6u5tKmwEiw1hU0B5QLIWPFIKAoFHtsz0sZVwDkJACLX48ZQ1_qdGZCCGcbRNIOEKTD8gnQddfKvXf-M3BPmgtw15M2Rp12gQpWwrNZ5lKEcYmiMZZd_T70iR26_dilb16S9WVVwQw71djNbr25rxvgGYBi1Rg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yBX3yNnFeK_hoNW3SNvF1OCbqGN7YW0mTExxsrbh1v9-Trp0P-iL0oQTShpOTc8m5fIRcMqENNSzxFc8Sd1sV-kpk1A9NEmkTMCNAV2ATyWAgRiM5XCNXq1oYAKiSz-DavVaxfFPo0l2V3aAhKGKGDvp6xHlIl9VaDfcw6iJYtfHj5DBD3yaWq5hC6PBYqthnzPxYBrKOcQZU3nTfh88uzSu6rn9RY638EtCV1ult_2-9O6T9U77nDVeKaZesQb5Htmt706tP8wyHGkiHZmyf3L5M1WTiL9CDduzg5UXumoNPHe6W9vSkdH0V8KNekXtoOnof6MaiZ4wbD23y1rt77fb9Gl7BH4dUzP2IWxoYZsGqyAhU3VnAFbUxF1zjYzWXNhZWgqUmszGgZAAZKh4IRSHDg3tAWrgKOCQeQOC63Bjqmr8zA1IwwzgaZxAxBYZ3yL6jTvq57KCR1oTpkIuGvClytQtVqByKcpYGCUoihuZYcvT31HOy2X99ekwf7wcPx2TL7d0ygeuEtOZfJZySDb2Yj2dfZxWTfAP9friN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2015+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Small-variance+nonparametric+clustering+on+the+hypersphere&rft.au=Straub%2C+Julian&rft.au=Campbell%2C+Trevor&rft.au=How%2C+Jonathan+P.&rft.au=Fisher%2C+John+W.&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=334&rft.epage=342&rft_id=info:doi/10.1109%2FCVPR.2015.7298630&rft.externalDocID=7298630 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |