Maximum entropy regularized group collaborative representation for face recognition

While sparse representation is heavily emphasized in many recent literatures, the importance of collaborative representation is usually ignored. In this paper, we exploit the advantage of collaborative representation and propose a maximum entropy regularized group collaborative representation (MECR)...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2015 IEEE International Conference on Image Processing (ICIP) s. 291 - 295
Hlavní autori: Zhong Zhao, Guocan Feng, Lifang Zhang, Jiehua Zhu
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.09.2015
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:While sparse representation is heavily emphasized in many recent literatures, the importance of collaborative representation is usually ignored. In this paper, we exploit the advantage of collaborative representation and propose a maximum entropy regularized group collaborative representation (MECR) algorithm for face recognition. MECR takes the group structure of the face data into consideration under the framework of collaborative representation, and uses maximum entropy principle to obtain discriminative coding for classification. Experiments show that MECR outperforms several state-of-the-art coding methods and dictionary learning methods on some benchmark face databases.
DOI:10.1109/ICIP.2015.7350806