Maximum entropy regularized group collaborative representation for face recognition

While sparse representation is heavily emphasized in many recent literatures, the importance of collaborative representation is usually ignored. In this paper, we exploit the advantage of collaborative representation and propose a maximum entropy regularized group collaborative representation (MECR)...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 IEEE International Conference on Image Processing (ICIP) s. 291 - 295
Hlavní autoři: Zhong Zhao, Guocan Feng, Lifang Zhang, Jiehua Zhu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.09.2015
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract While sparse representation is heavily emphasized in many recent literatures, the importance of collaborative representation is usually ignored. In this paper, we exploit the advantage of collaborative representation and propose a maximum entropy regularized group collaborative representation (MECR) algorithm for face recognition. MECR takes the group structure of the face data into consideration under the framework of collaborative representation, and uses maximum entropy principle to obtain discriminative coding for classification. Experiments show that MECR outperforms several state-of-the-art coding methods and dictionary learning methods on some benchmark face databases.
AbstractList While sparse representation is heavily emphasized in many recent literatures, the importance of collaborative representation is usually ignored. In this paper, we exploit the advantage of collaborative representation and propose a maximum entropy regularized group collaborative representation (MECR) algorithm for face recognition. MECR takes the group structure of the face data into consideration under the framework of collaborative representation, and uses maximum entropy principle to obtain discriminative coding for classification. Experiments show that MECR outperforms several state-of-the-art coding methods and dictionary learning methods on some benchmark face databases.
Author Lifang Zhang
Zhong Zhao
Guocan Feng
Jiehua Zhu
Author_xml – sequence: 1
  surname: Zhong Zhao
  fullname: Zhong Zhao
  organization: Sch. of Math. & Comput. Sci., Sun Yat-sen Univ., Guangzhou, China
– sequence: 2
  surname: Guocan Feng
  fullname: Guocan Feng
  email: sysumcsfeng@163.com
  organization: Sch. of Math. & Comput. Sci., Sun Yat-sen Univ., Guangzhou, China
– sequence: 3
  surname: Lifang Zhang
  fullname: Lifang Zhang
  organization: Sch. of Math. & Comput. Sci., Sun Yat-sen Univ., Guangzhou, China
– sequence: 4
  surname: Jiehua Zhu
  fullname: Jiehua Zhu
  organization: Dept. of Math. Sci., Georgia Southern Univ., Statesboro, GA, USA
BookMark eNotj91KxDAUhCPohbv6AOJNXqD1NEnb9FKKPwsrCip4t5ykJyXQNiXbiuvT28W9GuabYWBW7HwIAzF2k0GaZVDdberNWyogy9NS5qChOGOrTJVVpaWsvi7Z-wv--H7uOQ1TDOOBR2rnDqP_pYa3Mcwjt6Hr0ISIk_-mJR8j7Zf2YsPAXYjcoT1yG9rBH-EVu3DY7en6pGv2-fjwUT8n29enTX2_TbwAPSXKakBnFCjVKC2IUBa2NNYZQbLRaAwU2srCiQawQemMLSuRk7S5VRK0XLPb_11PRLsx-h7jYXf6Kf8AQpNPuw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2015.7350806
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 147998339X
9781479983391
EndPage 295
ExternalDocumentID 7350806
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i208t-4c80afb4044d482eea36c7bcfb2e3d8abb068c36f2d0ada3fbc7925e3c5c43083
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000371977800061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:37:22 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-4c80afb4044d482eea36c7bcfb2e3d8abb068c36f2d0ada3fbc7925e3c5c43083
PageCount 5
ParticipantIDs ieee_primary_7350806
PublicationCentury 2000
PublicationDate 20150901
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 20150901
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9290482
Snippet While sparse representation is heavily emphasized in many recent literatures, the importance of collaborative representation is usually ignored. In this paper,...
SourceID ieee
SourceType Publisher
StartPage 291
SubjectTerms Collaboration
Collaborative representation
Computational modeling
Encoding
Entropy
Face
face recognition
group structure
maximum entropy principle
Training
Title Maximum entropy regularized group collaborative representation for face recognition
URI https://ieeexplore.ieee.org/document/7350806
WOSCitedRecordID wos000371977800061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21ePCk0orf5ODRbdNNdpM9F4s9WAoq9FaSyQT20N2ytqX6692ka1Xw4i0MIYHJYV5m5s0j5I4lsZQALsqsSyORqSSqUYKOnK2jZcYcH3AXxCbkZKJms2zaIvd7LgwihuYz7PllqOXbEtY-VdaXvIYTfr72gZTpjqvVFCoHLOuPh-Op79VKes2-X4IpIV6Mjv930wnpfhPv6HQfUk5JC4sOeX7S23yxXlCfiC2X77QK-vFV_oGWBlYG_fGaG6RhUOUXqaigNSylToO3N81CZdElr6OHl-Fj1GghRHnM1CoSoJh2RjAhrFAxouYpSAPOxMit0sawVAFPXWyZtpo7AzKLE-SQgOA1zjoj7aIs8JxQk7HEWGliK-q_kJVaG5RQHwIoFEh7QTreIfPlbtzFvPHF5d_mK3Lkfb5ru7om7VW1xhtyCJtV_lbdhjf6BAvimJ4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA2lCnpSacVvc_Dotukmu8mei6XFthSs0FtJJgnsobtl-4H6692ka1Xw4i0MIYHJYV5m5s1D6IFEIecANki0jQOWiCgoUYIMrC6jZUIs7VDrxSb4eCxms2RSQ497LowxxjefmZZb-lq-zmHjUmVtTks44eZrHzjlrIqtVZUqOyRpD7qDievWilrVzl-SKT5i9E7-d9cpan5T7_BkH1TOUM1kDfQykm_pYrPALhWbL99x4RXki_TDaOx5GfjHe24N9qMqv2hFGS6BKbYSnL1qF8qzJnrtPU27_aBSQwjSkIh1wEAQaRUjjGkmQmMkjYErsCo0VAupFIkF0NiGmkgtqVXAkzAyFCJgtERa56ie5Zm5QFglJFKaq1Cz8jekuZTKcCgPAcMEcH2JGs4h8-Vu4MW88sXV3-Z7dNSfjobz4WD8fI2Onf93TVg3qL4uNuYWHcJ2na6KO_9enyklm-c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Maximum+entropy+regularized+group+collaborative+representation+for+face+recognition&rft.au=Zhong+Zhao&rft.au=Guocan+Feng&rft.au=Lifang+Zhang&rft.au=Jiehua+Zhu&rft.date=2015-09-01&rft.pub=IEEE&rft.spage=291&rft.epage=295&rft_id=info:doi/10.1109%2FICIP.2015.7350806&rft.externalDocID=7350806