Maximum entropy regularized group collaborative representation for face recognition
While sparse representation is heavily emphasized in many recent literatures, the importance of collaborative representation is usually ignored. In this paper, we exploit the advantage of collaborative representation and propose a maximum entropy regularized group collaborative representation (MECR)...
Uloženo v:
| Vydáno v: | 2015 IEEE International Conference on Image Processing (ICIP) s. 291 - 295 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.09.2015
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | While sparse representation is heavily emphasized in many recent literatures, the importance of collaborative representation is usually ignored. In this paper, we exploit the advantage of collaborative representation and propose a maximum entropy regularized group collaborative representation (MECR) algorithm for face recognition. MECR takes the group structure of the face data into consideration under the framework of collaborative representation, and uses maximum entropy principle to obtain discriminative coding for classification. Experiments show that MECR outperforms several state-of-the-art coding methods and dictionary learning methods on some benchmark face databases. |
|---|---|
| AbstractList | While sparse representation is heavily emphasized in many recent literatures, the importance of collaborative representation is usually ignored. In this paper, we exploit the advantage of collaborative representation and propose a maximum entropy regularized group collaborative representation (MECR) algorithm for face recognition. MECR takes the group structure of the face data into consideration under the framework of collaborative representation, and uses maximum entropy principle to obtain discriminative coding for classification. Experiments show that MECR outperforms several state-of-the-art coding methods and dictionary learning methods on some benchmark face databases. |
| Author | Lifang Zhang Zhong Zhao Guocan Feng Jiehua Zhu |
| Author_xml | – sequence: 1 surname: Zhong Zhao fullname: Zhong Zhao organization: Sch. of Math. & Comput. Sci., Sun Yat-sen Univ., Guangzhou, China – sequence: 2 surname: Guocan Feng fullname: Guocan Feng email: sysumcsfeng@163.com organization: Sch. of Math. & Comput. Sci., Sun Yat-sen Univ., Guangzhou, China – sequence: 3 surname: Lifang Zhang fullname: Lifang Zhang organization: Sch. of Math. & Comput. Sci., Sun Yat-sen Univ., Guangzhou, China – sequence: 4 surname: Jiehua Zhu fullname: Jiehua Zhu organization: Dept. of Math. Sci., Georgia Southern Univ., Statesboro, GA, USA |
| BookMark | eNotj91KxDAUhCPohbv6AOJNXqD1NEnb9FKKPwsrCip4t5ykJyXQNiXbiuvT28W9GuabYWBW7HwIAzF2k0GaZVDdberNWyogy9NS5qChOGOrTJVVpaWsvi7Z-wv--H7uOQ1TDOOBR2rnDqP_pYa3Mcwjt6Hr0ISIk_-mJR8j7Zf2YsPAXYjcoT1yG9rBH-EVu3DY7en6pGv2-fjwUT8n29enTX2_TbwAPSXKakBnFCjVKC2IUBa2NNYZQbLRaAwU2srCiQawQemMLSuRk7S5VRK0XLPb_11PRLsx-h7jYXf6Kf8AQpNPuw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICIP.2015.7350806 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 147998339X 9781479983391 |
| EndPage | 295 |
| ExternalDocumentID | 7350806 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-i208t-4c80afb4044d482eea36c7bcfb2e3d8abb068c36f2d0ada3fbc7925e3c5c43083 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000371977800061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:37:22 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i208t-4c80afb4044d482eea36c7bcfb2e3d8abb068c36f2d0ada3fbc7925e3c5c43083 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_7350806 |
| PublicationCentury | 2000 |
| PublicationDate | 20150901 |
| PublicationDateYYYYMMDD | 2015-09-01 |
| PublicationDate_xml | – month: 09 year: 2015 text: 20150901 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2015 IEEE International Conference on Image Processing (ICIP) |
| PublicationTitleAbbrev | ICIP |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.9290482 |
| Snippet | While sparse representation is heavily emphasized in many recent literatures, the importance of collaborative representation is usually ignored. In this paper,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 291 |
| SubjectTerms | Collaboration Collaborative representation Computational modeling Encoding Entropy Face face recognition group structure maximum entropy principle Training |
| Title | Maximum entropy regularized group collaborative representation for face recognition |
| URI | https://ieeexplore.ieee.org/document/7350806 |
| WOSCitedRecordID | wos000371977800061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21ePCk0orf5ODRbdNNdpM9F4s9WAoq9FaSyQT20N2ytqX6692ka1Xw4i0MIYHJYV5m5s0j5I4lsZQALsqsSyORqSSqUYKOnK2jZcYcH3AXxCbkZKJms2zaIvd7LgwihuYz7PllqOXbEtY-VdaXvIYTfr72gZTpjqvVFCoHLOuPh-Op79VKes2-X4IpIV6Mjv930wnpfhPv6HQfUk5JC4sOeX7S23yxXlCfiC2X77QK-vFV_oGWBlYG_fGaG6RhUOUXqaigNSylToO3N81CZdElr6OHl-Fj1GghRHnM1CoSoJh2RjAhrFAxouYpSAPOxMit0sawVAFPXWyZtpo7AzKLE-SQgOA1zjoj7aIs8JxQk7HEWGliK-q_kJVaG5RQHwIoFEh7QTreIfPlbtzFvPHF5d_mK3Lkfb5ru7om7VW1xhtyCJtV_lbdhjf6BAvimJ4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA2lCnpSacVvc_Dotukmu8mei6XFthSs0FtJJgnsobtl-4H6692ka1Xw4i0MIYHJYV5m5s1D6IFEIecANki0jQOWiCgoUYIMrC6jZUIs7VDrxSb4eCxms2RSQ497LowxxjefmZZb-lq-zmHjUmVtTks44eZrHzjlrIqtVZUqOyRpD7qDievWilrVzl-SKT5i9E7-d9cpan5T7_BkH1TOUM1kDfQykm_pYrPALhWbL99x4RXki_TDaOx5GfjHe24N9qMqv2hFGS6BKbYSnL1qF8qzJnrtPU27_aBSQwjSkIh1wEAQaRUjjGkmQmMkjYErsCo0VAupFIkF0NiGmkgtqVXAkzAyFCJgtERa56ie5Zm5QFglJFKaq1Cz8jekuZTKcCgPAcMEcH2JGs4h8-Vu4MW88sXV3-Z7dNSfjobz4WD8fI2Onf93TVg3qL4uNuYWHcJ2na6KO_9enyklm-c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Maximum+entropy+regularized+group+collaborative+representation+for+face+recognition&rft.au=Zhong+Zhao&rft.au=Guocan+Feng&rft.au=Lifang+Zhang&rft.au=Jiehua+Zhu&rft.date=2015-09-01&rft.pub=IEEE&rft.spage=291&rft.epage=295&rft_id=info:doi/10.1109%2FICIP.2015.7350806&rft.externalDocID=7350806 |