Bag-of-word based brand recognition using Markov clustering algorithm for codebook generation

In order to address the issue of counterfeiting online, it is necessary to use automatic tools that analyze the large amount of information available over the Internet. Analysis methods that extract information about the content of the images are very promising for this purpose. In this paper, a met...

Full description

Saved in:
Bibliographic Details
Published in:2015 IEEE International Conference on Image Processing (ICIP) pp. 3315 - 3318
Main Authors: Benezeth, Yannick, Bertaux, Aurelie, Manceau, Aldric
Format: Conference Proceeding
Language:English
Published: IEEE 01.09.2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In order to address the issue of counterfeiting online, it is necessary to use automatic tools that analyze the large amount of information available over the Internet. Analysis methods that extract information about the content of the images are very promising for this purpose. In this paper, a method that automatically extract the brand of objects in images is proposed. The method does not explicitly search for text or logos. This information is implicitly included in the Bag-of-Words representation. In the Bag-of-Words paradigm, visual features are clustered to create the visual words. Despite its shortcomings, k-means is the most widely used algorithm. With k-means, the selection of the number of visual words is critical. In this paper, another clustering algorithm is proposed. Markov Cluster Algorithm (MCL) is very fast, does not require an arbitrary selection of the number of classes and does not rely on random initialization. First, we demonstrate in this paper that MCL is competitive to k-means with a number of cluster experimentally selected. Second, we show that it is possible to identify brand from objects in images without previous knowledge about visual identity of these brands.
AbstractList In order to address the issue of counterfeiting online, it is necessary to use automatic tools that analyze the large amount of information available over the Internet. Analysis methods that extract information about the content of the images are very promising for this purpose. In this paper, a method that automatically extract the brand of objects in images is proposed. The method does not explicitly search for text or logos. This information is implicitly included in the Bag-of-Words representation. In the Bag-of-Words paradigm, visual features are clustered to create the visual words. Despite its shortcomings, k-means is the most widely used algorithm. With k-means, the selection of the number of visual words is critical. In this paper, another clustering algorithm is proposed. Markov Cluster Algorithm (MCL) is very fast, does not require an arbitrary selection of the number of classes and does not rely on random initialization. First, we demonstrate in this paper that MCL is competitive to k-means with a number of cluster experimentally selected. Second, we show that it is possible to identify brand from objects in images without previous knowledge about visual identity of these brands.
Author Benezeth, Yannick
Bertaux, Aurelie
Manceau, Aldric
Author_xml – sequence: 1
  givenname: Yannick
  surname: Benezeth
  fullname: Benezeth, Yannick
  email: yannick.benezeth@u-bourgogne.fr
  organization: LE2I, Univ. de Bourgogne, Dijon, France
– sequence: 2
  givenname: Aurelie
  surname: Bertaux
  fullname: Bertaux, Aurelie
  email: aurelie.bertaux@u-bourgogne.fr
  organization: LE2I, Univ. de Bourgogne, Dijon, France
– sequence: 3
  givenname: Aldric
  surname: Manceau
  fullname: Manceau, Aldric
  email: aldric.manceau@u-bourgogne.fr
  organization: LE2I, Univ. de Bourgogne, Dijon, France
BookMark eNotj8tKxDAYhSPowhl9AHGTF2hNmmuXWrwURnSh4EaGv82fGqaTSNpRfHsdnM058MH54CzIcUwRCbngrOSc1Vdt0z6XFeOqNEJxyc0RWXBp6toKUb-dkvcbGIrki--UHe1gwr_MEB3N2KchhjmkSHdTiAN9hLxJX7Qfd9OMeU9gHFIO88eW-pRpnxx2KW3ogBEz7Jdn5MTDOOH5oZfk9e72pXkoVk_3bXO9KkLF7FxIQKOQV1JIobXprOSdBag9cOTMaXASe-OqTimNFTLtteWWMeWZlKi9WJLLf29AxPVnDlvIP-vDY_ELtsBRKQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2015.7351417
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 147998339X
9781479983391
EndPage 3318
ExternalDocumentID 7351417
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i208t-4ae75e124343667b841b8aa9fa1e10d6ad4ec7d2b556e2e06f6818005f044e6f3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000371977803089&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:37:23 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-4ae75e124343667b841b8aa9fa1e10d6ad4ec7d2b556e2e06f6818005f044e6f3
PageCount 4
ParticipantIDs ieee_primary_7351417
PublicationCentury 2000
PublicationDate 20150901
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 20150901
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9289175
Snippet In order to address the issue of counterfeiting online, it is necessary to use automatic tools that analyze the large amount of information available over the...
SourceID ieee
SourceType Publisher
StartPage 3315
SubjectTerms Clustering algorithms
Feature extraction
Image recognition
Markov processes
Object recognition
Symmetric matrices
Visualization
Title Bag-of-word based brand recognition using Markov clustering algorithm for codebook generation
URI https://ieeexplore.ieee.org/document/7351417
WOSCitedRecordID wos000371977803089&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21ePCk0orf5ODRtNndfO3VYrEgpQeVXqRks5O1UHeltvXvm9kuFcGLlxBCQmCG8DLJezOE3Ngk0REAsNhnhokMLLMQYS5C73gMuZF1zciXRz0em-k0nbTI7U4LE9bV5DPoYbf-y88rt8ansr5G2nmk98ie1mqr1Wo-KiOe9keD0QS5WrLXzPtVMKXGi-Hh_3Y6It0f4R2d7CDlmLSg7JDXO1uwyrOvECdSRJ3QBoTJ6Y78U5UU-esFReVNtaFuscb8BzhiF0UV4v-3dxpupxQF7HitpkWdbRpXdsnz8P5p8MCaqghsHnOzYsKClhBgORGJUjozIsqMtam3EUQ8VzYX4HQeZ1IqiIErr1DPzaXnQoDyyQlpl1UJp4SG85iGCMVlznhhpclswDQlMIRwIrj2jHTQNLOPbeKLWWOV87-HL8gBWn9LwLok7dVyDVdk321W88_lde2tb0QNmes
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21CnpSacVvc_Bo2v1IstmrxdJiLT1U6UVKNjuphbordVv_vpntUhG8eAkhJAQyhDeTvDdDyK0Ow8gHABbYRDGegGYafMxFaI0XQKpEWTPyZRANh2oyiUc1crfVwrh1JfkMWtgt__LT3KzwqawdIe3cj3bIruA88DZqreqr0vfidr_THyFbS7Sqmb9KppSI0T38315HpPkjvaOjLagckxpkDfJ6r2cst-zLRYoUcce1DmNSuqX_5BlFBvuMovYmX1OzWGEGBBzRi1m-nBdv79T5pxQl7OhY01mZbxpXNslz92Hc6bGqLgKbB54qGNcQCXDAHPJQyihR3E-U1rHVPvheKnXKwURpkAghIQBPWomKbk9Yj3OQNjwh9SzP4JRQdyNjF6OYxCjLtVCJdqgmOQYRhjvjnpEGHs30Y5P6Ylqdyvnfwzdkvzd-GkwH_eHjBTlAS2zoWJekXixXcEX2zLqYfy6vS8t9A3LTnTI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Bag-of-word+based+brand+recognition+using+Markov+clustering+algorithm+for+codebook+generation&rft.au=Benezeth%2C+Yannick&rft.au=Bertaux%2C+Aurelie&rft.au=Manceau%2C+Aldric&rft.date=2015-09-01&rft.pub=IEEE&rft.spage=3315&rft.epage=3318&rft_id=info:doi/10.1109%2FICIP.2015.7351417&rft.externalDocID=7351417