Remote sensing image compression based on double-sparsity dictionary learning and universal trellis coded quantization

In this paper, we propose a novel remote sensing image compression method based on double-sparsity dictionary learning and universal trellis coded quantization (UTCQ). Recent years have seen a growing interest in the study of natural image compression based on sparse representation and dictionary le...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - International Conference on Image Processing s. 1665 - 1669
Hlavní autoři: Zhan, Xin, Zhang, Rong, Yin, Dong, Hu, Anzhou, Hu, Wenlong
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.09.2013
Témata:
ISSN:1522-4880
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we propose a novel remote sensing image compression method based on double-sparsity dictionary learning and universal trellis coded quantization (UTCQ). Recent years have seen a growing interest in the study of natural image compression based on sparse representation and dictionary learning. We show that using the double-sparsity model to learn a dictionary gives much better compression results for remote sensing images, the texture of which is much richer than that of natural images. We also show that the compression performance is improved significantly when advanced quantization and entropy coding strategies are used for encoding the sparse representation coefficients. The proposed method outperforms the existing dictionary-based image coding algorithms. Additionally, our method results in better ratedistortion performance and structural similarity results than CCSDS and JPEG2000 standard.
AbstractList In this paper, we propose a novel remote sensing image compression method based on double-sparsity dictionary learning and universal trellis coded quantization (UTCQ). Recent years have seen a growing interest in the study of natural image compression based on sparse representation and dictionary learning. We show that using the double-sparsity model to learn a dictionary gives much better compression results for remote sensing images, the texture of which is much richer than that of natural images. We also show that the compression performance is improved significantly when advanced quantization and entropy coding strategies are used for encoding the sparse representation coefficients. The proposed method outperforms the existing dictionary-based image coding algorithms. Additionally, our method results in better ratedistortion performance and structural similarity results than CCSDS and JPEG2000 standard.
Author Zhan, Xin
Hu, Anzhou
Yin, Dong
Zhang, Rong
Hu, Wenlong
Author_xml – sequence: 1
  givenname: Xin
  surname: Zhan
  fullname: Zhan, Xin
  organization: Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
– sequence: 2
  givenname: Rong
  surname: Zhang
  fullname: Zhang, Rong
  organization: Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
– sequence: 3
  givenname: Dong
  surname: Yin
  fullname: Yin, Dong
  organization: Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
– sequence: 4
  givenname: Anzhou
  surname: Hu
  fullname: Hu, Anzhou
  organization: Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
– sequence: 5
  givenname: Wenlong
  surname: Hu
  fullname: Hu, Wenlong
  organization: Key Laboratory of Geospatial Information Processing and Application System Technology, Chinese Academy of Sciences, Beijing 100190, China
BookMark eNotkM1Kw0AUhUeoYFt9AHEzL5A4f8kkSwlqCwVFdF3uZG7KSDqJM2khPr0JdnXP4jsfnLsiC995JOSes5RzVj5uq-17KhiXaa5lIZW8IiuudFkKqXi5IEueCZGoomA3ZBXjN2MzzJfk_IHHbkAa0UfnD9Qd4YC07o59wBhd56mBiJZOwXYn02ISewjRDSO1rh4mAMJIW4Tg5zp4S0_enTFEaOkQsG1dnHR2UvycwA_uF-bSLbluoI14d7lr8vXy_Fltkt3b67Z62iVOsGJIlGDIlJS5sA0qrLVVWjda5QaEMUYKI0qpobR1hg0HDqaoazFjJgNotFyTh3-vQ8R9H6Z5YdxffiT_APtWYTU
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2013.6738343
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1479923419
9781479923410
EndPage 1669
ExternalDocumentID 6738343
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i208t-420e043362dfe4ec7d477f746ba2bbb32b2937a9dc5ef1a1ab8cc2c7d4b5aaf73
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351597601157&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1522-4880
IngestDate Wed Aug 13 06:22:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-420e043362dfe4ec7d477f746ba2bbb32b2937a9dc5ef1a1ab8cc2c7d4b5aaf73
PageCount 5
ParticipantIDs ieee_primary_6738343
PublicationCentury 2000
PublicationDate 20130901
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 20130901
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings - International Conference on Image Processing
PublicationTitleAbbrev ICIP
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
Score 1.9339033
Snippet In this paper, we propose a novel remote sensing image compression method based on double-sparsity dictionary learning and universal trellis coded quantization...
SourceID ieee
SourceType Publisher
StartPage 1665
SubjectTerms Atoms
Dictionaries
Dictionary learning
Image coding
image compression
Machine learning
Quantization (signal)
Remote sensing
Sparse approximation
Training
Transform coding
universal trellis coded quantization
Vectors
Title Remote sensing image compression based on double-sparsity dictionary learning and universal trellis coded quantization
URI https://ieeexplore.ieee.org/document/6738343
WOSCitedRecordID wos000351597601157&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA7b8OBp6ib-JgePZmuTtmnPw-FAxhCF3UZ-vI7C7HRtB_73JmmYCF68lFBKCC9p3nvJ930PoXuZh0GeU0niRAckUgEjmUoEYQkIyYRQ0ErmP_P5PF0us0UHPRy4MADgwGcwsk13l6-3qrFHZWNboZJFrIu6nCctV-uQXFndGKeNapIruyj9DWYYZOPZZLawIC428h38qqTiHMm0_78hnKDhDyMPLw6-5hR1oDxDfR9CYv-DVgO0fwFje8CVxaWXa1y8m_0CW9x4i3ctsXVbGpuG3jZyA8TsKA6XgXXhKA5i94V9KYk1FqXGTQvdEBtc76x6Z4UtDV7jz8ZMimdxDtHb9PF18kR8aQVS0CCtSUQDsNJlCdU5RKC4jjjPeZRIQaWUjEoTBnCRaRVDHopQyFQpaj-TsRA5Z-eoV25LuEAY8tT4wViEWZqabnlGZZCl5mFCQZP9RpdoYM24-mjVM1begld_v75Gx9QVnLAorhvUq3cN3KIjta-LanfnpvwbYcCvag
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA9zCnqauolvc_BotzZ9pD0PZcM5hkzYbeTxZRRmp30M_O9N2jARvHgpoZRQkjTf9zW_B0L3XHmuUoQ7YSRdJxCu7yQiYo4fAeM-YwIayfwJnU7jxSKZtdDDjgsDADX4DPqmWZ_ly42ozK-ygXGo9AN_D-0b5yzL1tqVV0Y5plZH1eWVWZb2DNNzk8F4OJ4ZGJfft1388lKpQ8lT538vcYx6P5w8PNtFmxPUguwUdWwSie0nWnTR9hX06AMuDDI9W-H0Xe8Y2CDHG8Rrhk3gklg35Kbia3D0nlIjM7BMa5IDy7-wNZNYYZZJXDXgDbbGZW70OwtsiPASf1Z6WiyPs4fenh7nw5FjzRWclLhx6QTEBSNeFhGpIABBZUCpokHEGeGc-4TrRICyRIoQlMc8xmMhiHmMh4wp6p-hdrbJ4BxhULGOhCHzkjjW3dKEcDeJ9UUng7r-DS5Q1wzj8qPRz1jaEbz8-_YdOhzNXybLyXj6fIWOSG0_YTBd16hd5hXcoAOxLdMiv62n_xuwC7Kz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Image+Processing&rft.atitle=Remote+sensing+image+compression+based+on+double-sparsity+dictionary+learning+and+universal+trellis+coded+quantization&rft.au=Zhan%2C+Xin&rft.au=Zhang%2C+Rong&rft.au=Yin%2C+Dong&rft.au=Hu%2C+Anzhou&rft.date=2013-09-01&rft.pub=IEEE&rft.issn=1522-4880&rft.spage=1665&rft.epage=1669&rft_id=info:doi/10.1109%2FICIP.2013.6738343&rft.externalDocID=6738343
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-4880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-4880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-4880&client=summon