Data-driven 3D Voxel Patterns for object category recognition
Despite the great progress achieved in recognizing objects as 2D bounding boxes in images, it is still very challenging to detect occluded objects and estimate the 3D properties of multiple objects from a single image. In this paper, we propose a novel object representation, 3D Voxel Pattern (3DVP),...
Uloženo v:
| Vydáno v: | 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) s. 1903 - 1911 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2015
|
| Témata: | |
| ISSN: | 1063-6919, 1063-6919 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Despite the great progress achieved in recognizing objects as 2D bounding boxes in images, it is still very challenging to detect occluded objects and estimate the 3D properties of multiple objects from a single image. In this paper, we propose a novel object representation, 3D Voxel Pattern (3DVP), that jointly encodes the key properties of objects including appearance, 3D shape, viewpoint, occlusion and truncation. We discover 3DVPs in a data-driven way, and train a bank of specialized detectors for a dictionary of 3DVPs. The 3DVP detectors are capable of detecting objects with specific visibility patterns and transferring the meta-data from the 3DVPs to the detected objects, such as 2D segmentation mask, 3D pose as well as occlusion or truncation boundaries. The transferred meta-data allows us to infer the occlusion relationship among objects, which in turn provides improved object recognition results. Experiments are conducted on the KITTI detection benchmark [17] and the outdoor-scene dataset [41]. We improve state-of-the-art results on car detection and pose estimation with notable margins (6% in difficult data of KITTI). We also verify the ability of our method in accurately segmenting objects from the background and localizing them in 3D. |
|---|---|
| AbstractList | Despite the great progress achieved in recognizing objects as 2D bounding boxes in images, it is still very challenging to detect occluded objects and estimate the 3D properties of multiple objects from a single image. In this paper, we propose a novel object representation, 3D Voxel Pattern (3DVP), that jointly encodes the key properties of objects including appearance, 3D shape, viewpoint, occlusion and truncation. We discover 3DVPs in a data-driven way, and train a bank of specialized detectors for a dictionary of 3DVPs. The 3DVP detectors are capable of detecting objects with specific visibility patterns and transferring the meta-data from the 3DVPs to the detected objects, such as 2D segmentation mask, 3D pose as well as occlusion or truncation boundaries. The transferred meta-data allows us to infer the occlusion relationship among objects, which in turn provides improved object recognition results. Experiments are conducted on the KITTI detection benchmark [17] and the outdoor-scene dataset [41]. We improve state-of-the-art results on car detection and pose estimation with notable margins (6% in difficult data of KITTI). We also verify the ability of our method in accurately segmenting objects from the background and localizing them in 3D. |
| Author | Savarese, Silvio Yu Xiang Yuanqing Lin Wongun Choi |
| Author_xml | – sequence: 1 surname: Yu Xiang fullname: Yu Xiang email: yuxiang@umich.edu organization: Stanford Univ., Stanford, CA, USA – sequence: 2 surname: Wongun Choi fullname: Wongun Choi email: wongun@nec-labs.com organization: NEC Labs. America, Inc., CA, USA – sequence: 3 surname: Yuanqing Lin fullname: Yuanqing Lin email: ylin@nec-labs.com organization: NEC Labs. America, Inc., CA, USA – sequence: 4 givenname: Silvio surname: Savarese fullname: Savarese, Silvio email: ssilvio@stanford.edu organization: Stanford Univ., Stanford, CA, USA |
| BookMark | eNpN0DtPwzAUBWCDikRb-gMQS0aWhGs78WNgQC0vqRIVgq6R495URmlcbBfRf0-ldmA6Z_h0hjMig973SMg1hYJS0HfT5eK9YECrQjKtFMAZGdFSSC60KOGcDCkIngtN9eBfvySTGF0DHEBpzWBI7mcmmXwV3A_2GZ9lS_-LXbYwKWHoY9b6kPnmC23KrEm49mGfBbR-3bvkfH9FLlrTRZycckw-nx4_pi_5_O35dfowzx0DlXKmtYSS0waUUZJa1pTCIlON1aiMEFaVtjVt09LK2LJd2YZWqjp4KRQqWfExuT3uboP_3mFM9cZFi11nevS7WFMpgXPGBD3QmyN1iFhvg9uYsK9PJ_E_42lZ4Q |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/CVPR.2015.7298800 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISBN | 1467369640 9781467369640 |
| EISSN | 1063-6919 |
| EndPage | 1911 |
| ExternalDocumentID | 7298800 |
| Genre | orig-research |
| GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-i208t-29970431b08a871c2b46ce28bc9e8a66c84cfafbf15ac4fdcb158531b768e8753 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 197 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387959201100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6919 |
| IngestDate | Wed Oct 01 14:41:19 EDT 2025 Wed Aug 27 02:49:18 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i208t-29970431b08a871c2b46ce28bc9e8a66c84cfafbf15ac4fdcb158531b768e8753 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| PQID | 1770332261 |
| PQPubID | 23500 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_7298800 proquest_miscellaneous_1770332261 |
| PublicationCentury | 2000 |
| PublicationDate | 20150601 |
| PublicationDateYYYYMMDD | 2015-06-01 |
| PublicationDate_xml | – month: 06 year: 2015 text: 20150601 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib030089920 ssj0023720 ssj0003211698 |
| Score | 2.4049714 |
| Snippet | Despite the great progress achieved in recognizing objects as 2D bounding boxes in images, it is still very challenging to detect occluded objects and estimate... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 1903 |
| SubjectTerms | Benchmark testing Computer vision Detectors Image detection Image segmentation Object detection Object recognition Occlusion Pattern recognition Three dimensional Two dimensional |
| Title | Data-driven 3D Voxel Patterns for object category recognition |
| URI | https://ieeexplore.ieee.org/document/7298800 https://www.proquest.com/docview/1770332261 |
| WOSCitedRecordID | wos000387959201100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zePA0dRPnFxE8mq1fS5qDp83hQUYRHbuVJE1gIK2snfjn-9Km9aAXL6WElpaXl997L7_38hC64ywA6JWC-AYWeSSCkPCZiogBa8OpZEo1hcLPbLWKNxue9NB9Vwujta6Tz_TE3tZcflaovd0qm4IjCOoGAfoBY7Sp1Wp1J_Qsf-VcH4vCIUQ2lHeMQmC7sdTMJw0J5T53DKfv8el8nbzYJK_ZxH3AdVr5Bc-1zVkO_ve3x2j0U7yHk84snaCezk_RwHmb2K3lEobahg7t2BA9LEQlSLazCIjDBV4XX_odJ_URnHmJwb_FhbQbN9jmUdnaFtwlIBX5CL0tH1_nT8T1VyDbwIsrApaI2bN1pBcLiJtUICPbHyyWiutYUKriSBlhpPFnQkUmU9KH4AKehxBF2zjnDPXzItfnCGvtmSimWWR4FjEDV264YFJJDT6k5GM0tAJKP5ojNFInmzG6bSWcglpbrkLkutiXqc8AigBsqH_x96uX6MhOWZO1dYX61W6vr9Gh-qy25e6m1o1v6Q22Jg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lCnqq2or1GcGjafeRfeTgqbVUrGWRWnpbkmwCBdmVbiv-fCf78qAXL8sSdtllMvlmJt9MBqE7FjgAvYITW8Mip9xxCfMkJRqsDfNFIGVZKDwL5vNwtWJRC903tTBKqSL5TA3MbcHlJ5ncma2yITiCoG4QoO95lDpWWa1Va49rGQarcn4MDrsQ2_is4RQc04-l4D59l_jMZhXHaVtsOFpGrybNyxtUn6h6rfwC6MLqTDr_-98j1Psp38NRY5iOUUulJ6hT-Zu4Ws05DNUtHeqxLnoY8y0nycZgIHbHeJl9qXccFYdwpjkGDxdnwmzdYJNJZapbcJOClKU99DZ5XIympOqwQNaOFW4J2KLAnK4jrJBD5CQdQU2HsFBIpkLu-zKkUnMttO1xSXUihQ3hBTwPQYoykc4paqdZqs4QVsrSNPQTqllCAw1XphkPhBQKvEjB-qhrBBR_lIdoxJVs-ui2lnAMim3YCp6qbJfHdgBgBHDj2-d_v3qDDqaLl1k8e5o_X6BDM31lDtclam83O3WF9uXndp1vrgs9-QaSHblt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2015+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Data-driven+3D+Voxel+Patterns+for+object+category+recognition&rft.au=Yu+Xiang&rft.au=Wongun+Choi&rft.au=Yuanqing+Lin&rft.au=Savarese%2C+Silvio&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1903&rft.epage=1911&rft_id=info:doi/10.1109%2FCVPR.2015.7298800&rft.externalDocID=7298800 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |