Collaborative Hashing

Hashing technique has become a promising approach for fast similarity search. Most of existing hashing research pursue the binary codes for the same type of entities by preserving their similarities. In practice, there are many scenarios involving nearest neighbor search on the data given in matrix...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2014 IEEE Conference on Computer Vision and Pattern Recognition s. 2147 - 2154
Hlavní autori: Liu, Xianglong, He, Junfeng, Deng, Cheng, Lang, Bo
Médium: Konferenčný príspevok.. Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2014
Predmet:
ISSN:1063-6919, 1063-6919
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Hashing technique has become a promising approach for fast similarity search. Most of existing hashing research pursue the binary codes for the same type of entities by preserving their similarities. In practice, there are many scenarios involving nearest neighbor search on the data given in matrix form, where two different types of, yet naturally associated entities respectively correspond to its two dimensions or views. To fully explore the duality between the two views, we propose a collaborative hashing scheme for the data in matrix form to enable fast search in various applications such as image search using bag of words and recommendation using user-item ratings. By simultaneously preserving both the entity similarities in each view and the interrelationship between views, our collaborative hashing effectively learns the compact binary codes and the explicit hash functions for out-of-sample extension in an alternating optimization way. Extensive evaluations are conducted on three well-known datasets for search inside a single view and search across different views, demonstrating that our proposed method outperforms state-of-the-art baselines, with significant accuracy gains ranging from 7.67% to 45.87% relatively.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2014.275