Towards a Domain-Specific Language for geospatial data visualization maps with Big Data sets

Data visualization is an alternative for representing information and helping people gain faster insights. However, the programming/creating of a visualization for large data sets is still a challenging task for users with low-level of software development knowledge. Our goal is to increase the prod...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings / ACS/IEEE International Conference on Computer Systems and Applications s. 1 - 8
Hlavní autoři: Ledur, Cleverson, Griebler, Dalvan, Manssour, Isabel, Fernandes, Luiz Gustavo
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.11.2015
Témata:
ISSN:2161-5330
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Data visualization is an alternative for representing information and helping people gain faster insights. However, the programming/creating of a visualization for large data sets is still a challenging task for users with low-level of software development knowledge. Our goal is to increase the productivity of experts who are familiar with the application domain. Therefore, we proposed an external Domain-Specific Language (DSL) that allows massive input of raw data and provides a small dictionary with suitable data visualization keywords. Also, we implemented it to support efficient data filtering operations and generate HTML or Javascript output code files (using Google Maps API). To measure the potential of our DSL, we evaluated four types of geospatial data visualization maps with four different technologies. The experiment results demonstrated a productivity gain when compared to the traditional way of implementing (e.g., Google Maps API, OpenLayers, and Leaflet), and efficient algorithm implementation.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:2161-5330
DOI:10.1109/AICCSA.2015.7507178