Adaptive observers for non-square positive real infinite dimensional systems

This paper considers the adaptive estimation of parabolic partial differential equations with boundary control and observation. Structured perturbations enter at the boundary and are collocated either with the control or the measurement. Various combinations of boundary control, observation and stru...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the American Control Conference s. 3441 - 3448
Hlavný autor: Demetriou, Michael A.
Médium: Konferenčný príspevok.. Journal Article
Jazyk:English
Vydavateľské údaje: American Automatic Control Council (AACC) 01.07.2016
Predmet:
ISSN:2378-5861
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper considers the adaptive estimation of parabolic partial differential equations with boundary control and observation. Structured perturbations enter at the boundary and are collocated either with the control or the measurement. Various combinations of boundary control, observation and structured perturbations are considered and viewed as evolution equations in a Hilbert space via the use of Dirichlet maps. When certain conditions are met, the systems can utilize results on the adaptive estimation of positive real infinite dimensional systems. Extensive simulation studies of 1D parabolic partial differential equation with the structured perturbation collocated either with the input or the output operator are presented to demonstrate the utilization of results on adaptive estimation of positive real infinite dimensional systems for diffusion PDEs.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:2378-5861
DOI:10.1109/ACC.2016.7525446