Data-Driven Attack Detection and Identification for Cyber-Physical Systems Under Sparse Sensor Attacks: Iterative Reweighted l2/l1 Recovery Approach

This paper investigates the data-based attack detection and identification for cyber-physical systems (CPSs) under sparse sensor attacks. In order to improve the identification performance, a novel scheme based on an iterative reweighted <inline-formula> <tex-math notation="LaTeX"...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Jg. 72; H. 6; S. 2890 - 2902
Hauptverfasser: Wang, Jun-Lan, Li, Xiao-Jian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1549-8328, 1558-0806
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper investigates the data-based attack detection and identification for cyber-physical systems (CPSs) under sparse sensor attacks. In order to improve the identification performance, a novel scheme based on an iterative reweighted <inline-formula> <tex-math notation="LaTeX">l_{2}/l_{1} </tex-math></inline-formula> minimization algorithm is presented. Firstly, a threshold that characterizes the maximum number of identifiable attacks is determined. By introducing the reweighting technique, smaller weights are assigned to the relatively easy-to-identify attacks, namely, blocks with larger <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula>-norms, thus forcing the minimization to focus on the ones with smaller <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula>-norms. Then, the number of identifiable attacks is enhanced and a higher identification accuracy is guaranteed compared with the existing results. Finally, three examples are given to verify the effectiveness and advantages of the proposed scheme in both noisy and noiseless cases.
AbstractList This paper investigates the data-based attack detection and identification for cyber-physical systems (CPSs) under sparse sensor attacks. In order to improve the identification performance, a novel scheme based on an iterative reweighted <inline-formula> <tex-math notation="LaTeX">l_{2}/l_{1} </tex-math></inline-formula> minimization algorithm is presented. Firstly, a threshold that characterizes the maximum number of identifiable attacks is determined. By introducing the reweighting technique, smaller weights are assigned to the relatively easy-to-identify attacks, namely, blocks with larger <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula>-norms, thus forcing the minimization to focus on the ones with smaller <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula>-norms. Then, the number of identifiable attacks is enhanced and a higher identification accuracy is guaranteed compared with the existing results. Finally, three examples are given to verify the effectiveness and advantages of the proposed scheme in both noisy and noiseless cases.
This paper investigates the data-based attack detection and identification for cyber-physical systems (CPSs) under sparse sensor attacks. In order to improve the identification performance, a novel scheme based on an iterative reweighted [Formula Omitted] minimization algorithm is presented. Firstly, a threshold that characterizes the maximum number of identifiable attacks is determined. By introducing the reweighting technique, smaller weights are assigned to the relatively easy-to-identify attacks, namely, blocks with larger [Formula Omitted]-norms, thus forcing the minimization to focus on the ones with smaller [Formula Omitted]-norms. Then, the number of identifiable attacks is enhanced and a higher identification accuracy is guaranteed compared with the existing results. Finally, three examples are given to verify the effectiveness and advantages of the proposed scheme in both noisy and noiseless cases.
Author Wang, Jun-Lan
Li, Xiao-Jian
Author_xml – sequence: 1
  givenname: Jun-Lan
  surname: Wang
  fullname: Wang, Jun-Lan
  email: wangjunlan0516@163.com
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Xiao-Jian
  orcidid: 0000-0002-5353-5207
  surname: Li
  fullname: Li, Xiao-Jian
  email: lixiaojian@ise.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries and the College of Information Science and Engineering, Northeastern University, Shenyang, China
BookMark eNotkF9LwzAUxYNMcE4_gOBDwOduSdM2jW9j889goNjtuSTpnevs0ppkk34PP7DR-XQPhx_ncM8lGpjWAEI3lIwpJWKymhWLcUzidMzSVIicn6EhTdM8IjnJBr86EVHO4vwCXTq3IyQWhNEh-p5LL6O5rY9g8NR7qT_wHDxoX7cGS1PhRQXG15tayz9r01o86xXY6HXbu-A2uOidh73Da1OBxUUnrQNcgHEBPUW6e7zwYEPCEfAbfEH9vvVQ4SaeNDQYuj2C7fG062wr9fYKnW9k4-D6_47Q-vFhNXuOli9Pi9l0GdUxyXwEOQNRccVB06TKFOVKVZonmvNEhf8UkSKMwwmvpEx1ningipCES6AiAWAjdHfKDbWfB3C-3LUHa0JlyWLKBCNZTgJ1e6JqACg7W--l7cswOqcJS9gPdEd1Iw
CODEN ITCSCH
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
7SP
8FD
L7M
DOI 10.1109/TCSI.2025.3559987
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0806
EndPage 2902
ExternalDocumentID 10971434
Genre orig-research
GrantInformation_xml – fundername: Research Fund of State Key Laboratory of Synthetical Automation for Process Industries
  grantid: 2018ZCX14
– fundername: Aeronautical Science Foundation of China
  grantid: 20240055050001
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: U21A20475; U21A20117; 62373082
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: N2304007
  funderid: 10.13039/501100012226
GroupedDBID 0R~
29I
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VJK
7SP
8FD
L7M
ID FETCH-LOGICAL-i206t-e83e9d7b7ec14d6b17bbdc74c774b290b0a9110707daa5c86be7b0047ae194ee3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001480240800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-8328
IngestDate Thu Nov 27 15:42:12 EST 2025
Wed Aug 27 01:49:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i206t-e83e9d7b7ec14d6b17bbdc74c774b290b0a9110707daa5c86be7b0047ae194ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5353-5207
PQID 3213930680
PQPubID 85411
PageCount 13
ParticipantIDs proquest_journals_3213930680
ieee_primary_10971434
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. I, Regular papers
PublicationTitleAbbrev TCSI
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SSID ssj0029031
Score 2.4478645
Snippet This paper investigates the data-based attack detection and identification for cyber-physical systems (CPSs) under sparse sensor attacks. In order to improve...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 2890
SubjectTerms Accuracy
Algorithms
Attack detection and identification
Cyber-physical systems
cyber-physical systems (CPSs)
data-driven
Iterative algorithms
iterative reweighted l₂/l₁ (IR-l₂/l₁) minimization algorithm
Mathematical models
Minimization
Noise
Noise measurement
Norms
Optimization
Security
sparse attacks
Vectors
Title Data-Driven Attack Detection and Identification for Cyber-Physical Systems Under Sparse Sensor Attacks: Iterative Reweighted l2/l1 Recovery Approach
URI https://ieeexplore.ieee.org/document/10971434
https://www.proquest.com/docview/3213930680
Volume 72
WOSCitedRecordID wos001480240800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0806
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029031
  issn: 1549-8328
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEF2VqAd6AEqpoKTVHLgusb2218stSkBEqhBqqJRbtB9jCRU5UeKA-B_84M6uNwgJ9dCTffDa1szs7rzZmTeMnSlNVlAXiqdGI88xSbhyqeFJYUVWOPIgilAo_FPe3FSzmbqNxeqhFgYRQ_IZnvvbcJbvFnbjQ2UDf1pK-3u-w3aklF2x1iu6UonoyFFzxclMq3iESWMGd6PphKBgVpwLT7BVbVupvFt_w6Zytf-fv3PA9qL3CMNO3Z_ZB2wO2ac3nIJf2MtYt5qPV34Vg2HbavsHxtiGjKsGdOOgq82tY7AOyGuF0bPBFb-NOoNIYw6hKRJMlwR-EaYEeOnR7pXrC5gEPmb6DPzCpxBgRQcP2eAhBY9paYo8wzAylh-x31eXd6NrHlsv8PssKVuOlUDlpJFo09yVJpXGOCtzS96iIVGbRCuPHBPptC5sVRqUfgGQGlOVI4qvrNcsGjxmoKQwVVGnWimdk_NDFyPqsk4LQja2lCfsyIt2vuzYNeZbqZ6w_lY58ziv1nORkccqfL-Qb_8Ydsp2vaa7bK4-67WrDX5nH-1je79e_Qgm8xdXQsH5
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagIAGH8iqiUMAHru7GsR3H3Fa7rbpiWVXsIvUW-TGRqlZptZuC-j_4wYwdL0KqOPSUHOIkmhnb841nviHks7FoBa0yjDsLTEJRMBO4Y4XyolQBPQiVCoXnerGoz87MaS5WT7UwAJCSz-Aw3qaz_HDlb2KobBRPS3F_lw_JIyVlyYdyrb_4yhRioEeVhqGh1vkQE0eNVpPlDMFgqQ5FpNiqt81U7qzAaVs5fn7PH3pBdrP_SMeDwl-SB9C9Is_-YRV8TX5PbW_ZdB3XMTrue-sv6BT6lHPVUdsFOlTntjlcR9FvpZNbB2t2mrVGM5E5TW2R6PIa4S_QJUJefHR45eYLnSVGZvwM_Q6_UogVAr0sR5ecRlSLk-SWjjNn-R75cXy0mpyw3HyBnZdF1TOoBZignQbPZagc184Fr6VHf9GhqF1hTcSOhQ7WKl9XDnRcArQFbiSAeEN2uqsO3hJqtHC1ark1xkp0f_DiRFu1XCG28ZXeJ3tRtM31wK_RbKW6Tw62ymnyzNo0okSfVcSOIe_-M-wTeXKy-jZv5rPF1_fkadT6kNt1QHb69Q18II_9z_58s_6YzOcPli_FQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Attack+Detection+and+Identification+for+Cyber-Physical+Systems+Under+Sparse+Sensor+Attacks%3A+Iterative+Reweighted+l2%2Fl1+Recovery+Approach&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=Jun-Lan%2C+Wang&rft.au=Xiao-Jian%2C+Li&rft.date=2025-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1549-8328&rft.eissn=1558-0806&rft.volume=72&rft.issue=12&rft.spage=2890&rft.epage=2902&rft_id=info:doi/10.1109%2FTCSI.2025.3559987&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon