Data-Driven Attack Detection and Identification for Cyber-Physical Systems Under Sparse Sensor Attacks: Iterative Reweighted l2/l1 Recovery Approach
This paper investigates the data-based attack detection and identification for cyber-physical systems (CPSs) under sparse sensor attacks. In order to improve the identification performance, a novel scheme based on an iterative reweighted <inline-formula> <tex-math notation="LaTeX"...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Jg. 72; H. 6; S. 2890 - 2902 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1549-8328, 1558-0806 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper investigates the data-based attack detection and identification for cyber-physical systems (CPSs) under sparse sensor attacks. In order to improve the identification performance, a novel scheme based on an iterative reweighted <inline-formula> <tex-math notation="LaTeX">l_{2}/l_{1} </tex-math></inline-formula> minimization algorithm is presented. Firstly, a threshold that characterizes the maximum number of identifiable attacks is determined. By introducing the reweighting technique, smaller weights are assigned to the relatively easy-to-identify attacks, namely, blocks with larger <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula>-norms, thus forcing the minimization to focus on the ones with smaller <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula>-norms. Then, the number of identifiable attacks is enhanced and a higher identification accuracy is guaranteed compared with the existing results. Finally, three examples are given to verify the effectiveness and advantages of the proposed scheme in both noisy and noiseless cases. |
|---|---|
| AbstractList | This paper investigates the data-based attack detection and identification for cyber-physical systems (CPSs) under sparse sensor attacks. In order to improve the identification performance, a novel scheme based on an iterative reweighted <inline-formula> <tex-math notation="LaTeX">l_{2}/l_{1} </tex-math></inline-formula> minimization algorithm is presented. Firstly, a threshold that characterizes the maximum number of identifiable attacks is determined. By introducing the reweighting technique, smaller weights are assigned to the relatively easy-to-identify attacks, namely, blocks with larger <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula>-norms, thus forcing the minimization to focus on the ones with smaller <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula>-norms. Then, the number of identifiable attacks is enhanced and a higher identification accuracy is guaranteed compared with the existing results. Finally, three examples are given to verify the effectiveness and advantages of the proposed scheme in both noisy and noiseless cases. This paper investigates the data-based attack detection and identification for cyber-physical systems (CPSs) under sparse sensor attacks. In order to improve the identification performance, a novel scheme based on an iterative reweighted [Formula Omitted] minimization algorithm is presented. Firstly, a threshold that characterizes the maximum number of identifiable attacks is determined. By introducing the reweighting technique, smaller weights are assigned to the relatively easy-to-identify attacks, namely, blocks with larger [Formula Omitted]-norms, thus forcing the minimization to focus on the ones with smaller [Formula Omitted]-norms. Then, the number of identifiable attacks is enhanced and a higher identification accuracy is guaranteed compared with the existing results. Finally, three examples are given to verify the effectiveness and advantages of the proposed scheme in both noisy and noiseless cases. |
| Author | Wang, Jun-Lan Li, Xiao-Jian |
| Author_xml | – sequence: 1 givenname: Jun-Lan surname: Wang fullname: Wang, Jun-Lan email: wangjunlan0516@163.com organization: College of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 2 givenname: Xiao-Jian orcidid: 0000-0002-5353-5207 surname: Li fullname: Li, Xiao-Jian email: lixiaojian@ise.neu.edu.cn organization: State Key Laboratory of Synthetical Automation for Process Industries and the College of Information Science and Engineering, Northeastern University, Shenyang, China |
| BookMark | eNotkF9LwzAUxYNMcE4_gOBDwOduSdM2jW9j889goNjtuSTpnevs0ppkk34PP7DR-XQPhx_ncM8lGpjWAEI3lIwpJWKymhWLcUzidMzSVIicn6EhTdM8IjnJBr86EVHO4vwCXTq3IyQWhNEh-p5LL6O5rY9g8NR7qT_wHDxoX7cGS1PhRQXG15tayz9r01o86xXY6HXbu-A2uOidh73Da1OBxUUnrQNcgHEBPUW6e7zwYEPCEfAbfEH9vvVQ4SaeNDQYuj2C7fG062wr9fYKnW9k4-D6_47Q-vFhNXuOli9Pi9l0GdUxyXwEOQNRccVB06TKFOVKVZonmvNEhf8UkSKMwwmvpEx1ningipCES6AiAWAjdHfKDbWfB3C-3LUHa0JlyWLKBCNZTgJ1e6JqACg7W--l7cswOqcJS9gPdEd1Iw |
| CODEN | ITCSCH |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE 7SP 8FD L7M |
| DOI | 10.1109/TCSI.2025.3559987 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0806 |
| EndPage | 2902 |
| ExternalDocumentID | 10971434 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Research Fund of State Key Laboratory of Synthetical Automation for Process Industries grantid: 2018ZCX14 – fundername: Aeronautical Science Foundation of China grantid: 20240055050001 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: U21A20475; U21A20117; 62373082 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: N2304007 funderid: 10.13039/501100012226 |
| GroupedDBID | 0R~ 29I 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF M43 O9- OCL PZZ RIA RIE RNS VJK 7SP 8FD L7M |
| ID | FETCH-LOGICAL-i206t-e83e9d7b7ec14d6b17bbdc74c774b290b0a9110707daa5c86be7b0047ae194ee3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001480240800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-8328 |
| IngestDate | Thu Nov 27 15:42:12 EST 2025 Wed Aug 27 01:49:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i206t-e83e9d7b7ec14d6b17bbdc74c774b290b0a9110707daa5c86be7b0047ae194ee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5353-5207 |
| PQID | 3213930680 |
| PQPubID | 85411 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3213930680 ieee_primary_10971434 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on circuits and systems. I, Regular papers |
| PublicationTitleAbbrev | TCSI |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| SSID | ssj0029031 |
| Score | 2.4478645 |
| Snippet | This paper investigates the data-based attack detection and identification for cyber-physical systems (CPSs) under sparse sensor attacks. In order to improve... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 2890 |
| SubjectTerms | Accuracy Algorithms Attack detection and identification Cyber-physical systems cyber-physical systems (CPSs) data-driven Iterative algorithms iterative reweighted l₂/l₁ (IR-l₂/l₁) minimization algorithm Mathematical models Minimization Noise Noise measurement Norms Optimization Security sparse attacks Vectors |
| Title | Data-Driven Attack Detection and Identification for Cyber-Physical Systems Under Sparse Sensor Attacks: Iterative Reweighted l2/l1 Recovery Approach |
| URI | https://ieeexplore.ieee.org/document/10971434 https://www.proquest.com/docview/3213930680 |
| Volume | 72 |
| WOSCitedRecordID | wos001480240800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0806 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0029031 issn: 1549-8328 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEF2VqAd6AEqpoKTVHLgusb2218stSkBEqhBqqJRbtB9jCRU5UeKA-B_84M6uNwgJ9dCTffDa1szs7rzZmTeMnSlNVlAXiqdGI88xSbhyqeFJYUVWOPIgilAo_FPe3FSzmbqNxeqhFgYRQ_IZnvvbcJbvFnbjQ2UDf1pK-3u-w3aklF2x1iu6UonoyFFzxclMq3iESWMGd6PphKBgVpwLT7BVbVupvFt_w6Zytf-fv3PA9qL3CMNO3Z_ZB2wO2ac3nIJf2MtYt5qPV34Vg2HbavsHxtiGjKsGdOOgq82tY7AOyGuF0bPBFb-NOoNIYw6hKRJMlwR-EaYEeOnR7pXrC5gEPmb6DPzCpxBgRQcP2eAhBY9paYo8wzAylh-x31eXd6NrHlsv8PssKVuOlUDlpJFo09yVJpXGOCtzS96iIVGbRCuPHBPptC5sVRqUfgGQGlOVI4qvrNcsGjxmoKQwVVGnWimdk_NDFyPqsk4LQja2lCfsyIt2vuzYNeZbqZ6w_lY58ziv1nORkccqfL-Qb_8Ydsp2vaa7bK4-67WrDX5nH-1je79e_Qgm8xdXQsH5 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagIAGH8iqiUMAHru7GsR3H3Fa7rbpiWVXsIvUW-TGRqlZptZuC-j_4wYwdL0KqOPSUHOIkmhnb841nviHks7FoBa0yjDsLTEJRMBO4Y4XyolQBPQiVCoXnerGoz87MaS5WT7UwAJCSz-Aw3qaz_HDlb2KobBRPS3F_lw_JIyVlyYdyrb_4yhRioEeVhqGh1vkQE0eNVpPlDMFgqQ5FpNiqt81U7qzAaVs5fn7PH3pBdrP_SMeDwl-SB9C9Is_-YRV8TX5PbW_ZdB3XMTrue-sv6BT6lHPVUdsFOlTntjlcR9FvpZNbB2t2mrVGM5E5TW2R6PIa4S_QJUJefHR45eYLnSVGZvwM_Q6_UogVAr0sR5ecRlSLk-SWjjNn-R75cXy0mpyw3HyBnZdF1TOoBZignQbPZagc184Fr6VHf9GhqF1hTcSOhQ7WKl9XDnRcArQFbiSAeEN2uqsO3hJqtHC1ark1xkp0f_DiRFu1XCG28ZXeJ3tRtM31wK_RbKW6Tw62ymnyzNo0okSfVcSOIe_-M-wTeXKy-jZv5rPF1_fkadT6kNt1QHb69Q18II_9z_58s_6YzOcPli_FQA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Attack+Detection+and+Identification+for+Cyber-Physical+Systems+Under+Sparse+Sensor+Attacks%3A+Iterative+Reweighted+l2%2Fl1+Recovery+Approach&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=Jun-Lan%2C+Wang&rft.au=Xiao-Jian%2C+Li&rft.date=2025-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1549-8328&rft.eissn=1558-0806&rft.volume=72&rft.issue=12&rft.spage=2890&rft.epage=2902&rft_id=info:doi/10.1109%2FTCSI.2025.3559987&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon |