A one-layer recurrent neural network for convex programming

This paper presents a one-layer recurrent neural network for solving convex programming problems subject to linear equality and nonnegativity constraints. The number of neurons in the neural network is equal to that of decision variables in the optimization problem. Compared with the existing neural...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) Ročník 10; s. 83 - 90
Hlavní autoři: Liu, Qingshan, Wang, Jun
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.06.2008
Témata:
ISBN:1424418208, 9781424418206, 9781424432196, 1424432197
ISSN:2161-4393, 1522-4899
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a one-layer recurrent neural network for solving convex programming problems subject to linear equality and nonnegativity constraints. The number of neurons in the neural network is equal to that of decision variables in the optimization problem. Compared with the existing neural networks for optimization, the proposed neural network has lower model complexity. Moreover, the proposed neural network is proved to be globally convergent to the optimal solution(s) under some mild conditions. Simulation results show the effectiveness and performance of the proposed neural network.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISBN:1424418208
9781424418206
9781424432196
1424432197
ISSN:2161-4393
1522-4899
DOI:10.1109/IJCNN.2008.4633771