Bio-inspired stochastic chance-constrained multi-robot task allocation using WSN
The multi-robot task allocation (MRTA) especially in unknown complex environment is one of the fundamental problems, a mostly important object in research of multi-robot. The MRTA problem is initially formulated as a chance-constrained optimization problem. Monte Carlo simulation is used to verify t...
Gespeichert in:
| Veröffentlicht in: | 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) Jg. 10; S. 721 - 726 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.06.2008
|
| Schlagworte: | |
| ISBN: | 1424418208, 9781424418206, 9781424432196, 1424432197 |
| ISSN: | 2161-4393, 1522-4899 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The multi-robot task allocation (MRTA) especially in unknown complex environment is one of the fundamental problems, a mostly important object in research of multi-robot. The MRTA problem is initially formulated as a chance-constrained optimization problem. Monte Carlo simulation is used to verify the accuracy of the solution provided by the algorithm. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used. A hybrid intelligent algorithm combined Monte Carlo simulation and neural network is used for solving stochastic chance constrained models of MRTA. A practical implementation with real WSN and real mobile robots were carried out. In environment the successful implementation of tasks without collision validates the efficiency, stability and accuracy of the proposed algorithm. The convergence curve shows that as iterative generation grows, the utility increases and finally reaches a stable and optimal value. Results show that using sensor information fusion can greatly improve the efficiency. The algorithm is proved better than tradition algorithms without WSN for MRTA in real time. |
|---|---|
| AbstractList | The multi-robot task allocation (MRTA) especially in unknown complex environment is one of the fundamental problems, a mostly important object in research of multi-robot. The MRTA problem is initially formulated as a chance-constrained optimization [abstract truncated by publisher]. The multi-robot task allocation (MRTA) especially in unknown complex environment is one of the fundamental problems, a mostly important object in research of multi-robot. The MRTA problem is initially formulated as a chance-constrained optimization problem. Monte Carlo simulation is used to verify the accuracy of the solution provided by the algorithm. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used. A hybrid intelligent algorithm combined Monte Carlo simulation and neural network is used for solving stochastic chance constrained models of MRTA. A practical implementation with real WSN and real mobile robots were carried out. In environment the successful implementation of tasks without collision validates the efficiency, stability and accuracy of the proposed algorithm. The convergence curve shows that as iterative generation grows, the utility increases and finally reaches a stable and optimal value. Results show that using sensor information fusion can greatly improve the efficiency. The algorithm is proved better than tradition algorithms without WSN for MRTA in real time. |
| Author | Ma Hong-xu Xue Han |
| Author_xml | – sequence: 1 givenname: Xue surname: Han fullname: Han, Xue – sequence: 2 givenname: Hong-xu surname: Ma fullname: Ma, Hong-xu |
| BookMark | eNpFkD1PwzAYhI0oEm3hD8CSic3Ffu3YzggVn6oKEiDGyLEdMKR2iZ2Bf0-kVmI63d2jG26GJiEGh9AZJQtKSXX58LhcrxdAiFpwwZiS5QGaUQ6cUwVUHP4boiZoOkYUc1axYzRL6YsQYFXFpuj52kfsQ9r63tki5Wg-dcreFKMG47CJIeVe-zC2m6HLHvexibnIOn0Xuuui0dnHUAzJh4_i_WV9go5a3SV3utc5eru9eV3e49XT3cPyaoU9EJGx5sISZxveVhxkY0tgilhSaglCgWytFAxUKzWD0kFZypbaRo9gJaSzxrI5utjtbvv4M7iU641PxnWdDi4OqWacKwGUj-D5DvTOuXrb-43uf-v9Z-wPgTBg2Q |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/IJCNN.2008.4633875 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1424418216 9781424418213 |
| EndPage | 726 |
| ExternalDocumentID | 4633875 |
| Genre | orig-research |
| GroupedDBID | 29I 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-i206t-a46d0edb4f9427bd52380d05a726827fd76328f7a325e2557f1dba7bd967edcd3 |
| IEDL.DBID | RIE |
| ISBN | 1424418208 9781424418206 9781424432196 1424432197 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000263827200118&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2161-4393 1522-4899 |
| IngestDate | Thu Jul 10 17:35:16 EDT 2025 Wed Aug 27 01:42:20 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i206t-a46d0edb4f9427bd52380d05a726827fd76328f7a325e2557f1dba7bd967edcd3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 34486214 |
| PQPubID | 23500 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_34486214 ieee_primary_4633875 |
| PublicationCentury | 2000 |
| PublicationDate | 20080601 |
| PublicationDateYYYYMMDD | 2008-06-01 |
| PublicationDate_xml | – month: 06 year: 2008 text: 20080601 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) |
| PublicationTitleAbbrev | IJCNN |
| PublicationYear | 2008 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0023993 ssj0000443555 ssj0000453824 ssj0020343 |
| Score | 1.6743827 |
| Snippet | The multi-robot task allocation (MRTA) especially in unknown complex environment is one of the fundamental problems, a mostly important object in research of... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 721 |
| SubjectTerms | Algorithm design and analysis Mobile robots Robot kinematics Robot sensing systems Robots Stochastic processes Wireless sensor networks |
| Title | Bio-inspired stochastic chance-constrained multi-robot task allocation using WSN |
| URI | https://ieeexplore.ieee.org/document/4633875 https://www.proquest.com/docview/34486214 |
| Volume | 10 |
| WOSCitedRecordID | wos000263827200118&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLbaioGpQIsopwdGTJ3EsZOVigoYokqA6Bb5CkRICWpTfj_POdoBFrbcjl4cv_N7H0LX2sYhzYQksYo0YYpFROogIzRSvqY6Nh7TNdmESJJouYwXPXSzxcJYa-viM3vrNutcvin1xoXKpoyDQyXCPuoLwRus1jaeQhko_nDXZ88pXkcsBxYNAaUbdKAu17A86no9tfu8Q9PQePr4NEuSpsayHa7lXfm1WNcaaD7837sfoPEOyocXWyV1iHq2OELDjssBt7_2CC3u8pLkhcu7W4PBItQf0rVwxg4ZrC3Rzo50dBJwti5CJKtSlRWu5PoTu-R9E_rDro7-Hb89J2P0Or9_mT2Qlm2B5CCBikjGDbVGsSxmvlAGPNSIGhpK4fPIF5mBlciP4LMGfmjBERGZZ5SEC2MurNEmOEaDoizsCcIeHJY2ZNyKgClBFYth4dDc1wE8V7IJGjkBpV9NQ420lc0EXXUSTmGSu8yFLGy5WacBOJHc99jp3zeeof2mjMMFR87RoFpt7AXa099Vvl5d1vPkB_7juFc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT4NAFH7RaqKnusa6zsGjo1MYGLjaaOpGmlijNzIbSkzAtNTf7xsK7UEv3tiHPIZ56_c-gHNt44BlQtJYRZpyxSMqtZ9RFilPMx2bPtc12YRIkujtLR6twMUCC2OtrYvP7KXbrHP5ptQzFyq74iE6VCJYhTXHnNWgtRYRFcZR9QfLTntO9TpqObRpKKpdv4V1uZblUdvtqdkPWzwNi6_u7gdJMq-ybAZsmFd-Lde1Drrt_u_tt2BvCeYjo4Wa2oYVW-xAt2VzIM3PvQuj67ykeeEy79YQtAn1h3RNnInDBmtLtbMkHaEEnq3LEOmkVGVFKjn9JC59Pw_-EVdJ_05en5M9eLm9GQ-GtOFboDlKoKKSh4ZZo3gWc08ogz5qxAwLpPDCyBOZwbXIi_DD-l5g0RURWd8oiRfGobBGG38fOkVZ2AMgfTwsbcBDK3yuBFM8xqVDh5728bmS92DXCSj9mrfUSBvZ9OCslXCK09zlLmRhy9k09dGNDL0-P_z7xjPYGI6fHtPHu-ThCDbnRR0uVHIMnWoysyewrr-rfDo5refMD8vAu6A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+IEEE+International+Joint+Conference+on+Neural+Networks+%28IEEE+World+Congress+on+Computational+Intelligence%29&rft.atitle=Bio-inspired+stochastic+chance-constrained+multi-robot+task+allocation+using+WSN&rft.au=Xue+Han&rft.au=Ma+Hong-xu&rft.date=2008-06-01&rft.pub=IEEE&rft.isbn=9781424418206&rft.issn=2161-4393&rft.spage=721&rft.epage=726&rft_id=info:doi/10.1109%2FIJCNN.2008.4633875&rft.externalDocID=4633875 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-4393&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-4393&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-4393&client=summon |

