Bio-inspired stochastic chance-constrained multi-robot task allocation using WSN

The multi-robot task allocation (MRTA) especially in unknown complex environment is one of the fundamental problems, a mostly important object in research of multi-robot. The MRTA problem is initially formulated as a chance-constrained optimization problem. Monte Carlo simulation is used to verify t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) Jg. 10; S. 721 - 726
Hauptverfasser: Han, Xue, Ma, Hong-xu
Format: Tagungsbericht Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2008
Schlagworte:
ISBN:1424418208, 9781424418206, 9781424432196, 1424432197
ISSN:2161-4393, 1522-4899
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The multi-robot task allocation (MRTA) especially in unknown complex environment is one of the fundamental problems, a mostly important object in research of multi-robot. The MRTA problem is initially formulated as a chance-constrained optimization problem. Monte Carlo simulation is used to verify the accuracy of the solution provided by the algorithm. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used. A hybrid intelligent algorithm combined Monte Carlo simulation and neural network is used for solving stochastic chance constrained models of MRTA. A practical implementation with real WSN and real mobile robots were carried out. In environment the successful implementation of tasks without collision validates the efficiency, stability and accuracy of the proposed algorithm. The convergence curve shows that as iterative generation grows, the utility increases and finally reaches a stable and optimal value. Results show that using sensor information fusion can greatly improve the efficiency. The algorithm is proved better than tradition algorithms without WSN for MRTA in real time.
AbstractList The multi-robot task allocation (MRTA) especially in unknown complex environment is one of the fundamental problems, a mostly important object in research of multi-robot. The MRTA problem is initially formulated as a chance-constrained optimization [abstract truncated by publisher].
The multi-robot task allocation (MRTA) especially in unknown complex environment is one of the fundamental problems, a mostly important object in research of multi-robot. The MRTA problem is initially formulated as a chance-constrained optimization problem. Monte Carlo simulation is used to verify the accuracy of the solution provided by the algorithm. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used. A hybrid intelligent algorithm combined Monte Carlo simulation and neural network is used for solving stochastic chance constrained models of MRTA. A practical implementation with real WSN and real mobile robots were carried out. In environment the successful implementation of tasks without collision validates the efficiency, stability and accuracy of the proposed algorithm. The convergence curve shows that as iterative generation grows, the utility increases and finally reaches a stable and optimal value. Results show that using sensor information fusion can greatly improve the efficiency. The algorithm is proved better than tradition algorithms without WSN for MRTA in real time.
Author Ma Hong-xu
Xue Han
Author_xml – sequence: 1
  givenname: Xue
  surname: Han
  fullname: Han, Xue
– sequence: 2
  givenname: Hong-xu
  surname: Ma
  fullname: Ma, Hong-xu
BookMark eNpFkD1PwzAYhI0oEm3hD8CSic3Ffu3YzggVn6oKEiDGyLEdMKR2iZ2Bf0-kVmI63d2jG26GJiEGh9AZJQtKSXX58LhcrxdAiFpwwZiS5QGaUQ6cUwVUHP4boiZoOkYUc1axYzRL6YsQYFXFpuj52kfsQ9r63tki5Wg-dcreFKMG47CJIeVe-zC2m6HLHvexibnIOn0Xuuui0dnHUAzJh4_i_WV9go5a3SV3utc5eru9eV3e49XT3cPyaoU9EJGx5sISZxveVhxkY0tgilhSaglCgWytFAxUKzWD0kFZypbaRo9gJaSzxrI5utjtbvv4M7iU641PxnWdDi4OqWacKwGUj-D5DvTOuXrb-43uf-v9Z-wPgTBg2Q
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/IJCNN.2008.4633875
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424418216
9781424418213
EndPage 726
ExternalDocumentID 4633875
Genre orig-research
GroupedDBID 29I
29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i206t-a46d0edb4f9427bd52380d05a726827fd76328f7a325e2557f1dba7bd967edcd3
IEDL.DBID RIE
ISBN 1424418208
9781424418206
9781424432196
1424432197
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000263827200118&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2161-4393
1522-4899
IngestDate Thu Jul 10 17:35:16 EDT 2025
Wed Aug 27 01:42:20 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i206t-a46d0edb4f9427bd52380d05a726827fd76328f7a325e2557f1dba7bd967edcd3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 34486214
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_34486214
ieee_primary_4633875
PublicationCentury 2000
PublicationDate 20080601
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 20080601
  day: 01
PublicationDecade 2000
PublicationTitle 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)
PublicationTitleAbbrev IJCNN
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023993
ssj0000443555
ssj0000453824
ssj0020343
Score 1.6743827
Snippet The multi-robot task allocation (MRTA) especially in unknown complex environment is one of the fundamental problems, a mostly important object in research of...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 721
SubjectTerms Algorithm design and analysis
Mobile robots
Robot kinematics
Robot sensing systems
Robots
Stochastic processes
Wireless sensor networks
Title Bio-inspired stochastic chance-constrained multi-robot task allocation using WSN
URI https://ieeexplore.ieee.org/document/4633875
https://www.proquest.com/docview/34486214
Volume 10
WOSCitedRecordID wos000263827200118&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLbaioGpQIsopwdGTJ3EsZOVigoYokqA6Bb5CkRICWpTfj_POdoBFrbcjl4cv_N7H0LX2sYhzYQksYo0YYpFROogIzRSvqY6Nh7TNdmESJJouYwXPXSzxcJYa-viM3vrNutcvin1xoXKpoyDQyXCPuoLwRus1jaeQhko_nDXZ88pXkcsBxYNAaUbdKAu17A86no9tfu8Q9PQePr4NEuSpsayHa7lXfm1WNcaaD7837sfoPEOyocXWyV1iHq2OELDjssBt7_2CC3u8pLkhcu7W4PBItQf0rVwxg4ZrC3Rzo50dBJwti5CJKtSlRWu5PoTu-R9E_rDro7-Hb89J2P0Or9_mT2Qlm2B5CCBikjGDbVGsSxmvlAGPNSIGhpK4fPIF5mBlciP4LMGfmjBERGZZ5SEC2MurNEmOEaDoizsCcIeHJY2ZNyKgClBFYth4dDc1wE8V7IJGjkBpV9NQ420lc0EXXUSTmGSu8yFLGy5WacBOJHc99jp3zeeof2mjMMFR87RoFpt7AXa099Vvl5d1vPkB_7juFc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT4NAFH7RaqKnusa6zsGjo1MYGLjaaOpGmlijNzIbSkzAtNTf7xsK7UEv3tiHPIZ56_c-gHNt44BlQtJYRZpyxSMqtZ9RFilPMx2bPtc12YRIkujtLR6twMUCC2OtrYvP7KXbrHP5ptQzFyq74iE6VCJYhTXHnNWgtRYRFcZR9QfLTntO9TpqObRpKKpdv4V1uZblUdvtqdkPWzwNi6_u7gdJMq-ybAZsmFd-Lde1Drrt_u_tt2BvCeYjo4Wa2oYVW-xAt2VzIM3PvQuj67ykeeEy79YQtAn1h3RNnInDBmtLtbMkHaEEnq3LEOmkVGVFKjn9JC59Pw_-EVdJ_05en5M9eLm9GQ-GtOFboDlKoKKSh4ZZo3gWc08ogz5qxAwLpPDCyBOZwbXIi_DD-l5g0RURWd8oiRfGobBGG38fOkVZ2AMgfTwsbcBDK3yuBFM8xqVDh5728bmS92DXCSj9mrfUSBvZ9OCslXCK09zlLmRhy9k09dGNDL0-P_z7xjPYGI6fHtPHu-ThCDbnRR0uVHIMnWoysyewrr-rfDo5refMD8vAu6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+IEEE+International+Joint+Conference+on+Neural+Networks+%28IEEE+World+Congress+on+Computational+Intelligence%29&rft.atitle=Bio-inspired+stochastic+chance-constrained+multi-robot+task+allocation+using+WSN&rft.au=Xue+Han&rft.au=Ma+Hong-xu&rft.date=2008-06-01&rft.pub=IEEE&rft.isbn=9781424418206&rft.issn=2161-4393&rft.spage=721&rft.epage=726&rft_id=info:doi/10.1109%2FIJCNN.2008.4633875&rft.externalDocID=4633875
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-4393&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-4393&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-4393&client=summon