MIMOSA: A Multi-Modal SLAM Framework for Resilient Autonomy against Sensor Degradation

This paper presents a framework for Multi-Modal SLAM (MIMOSA) that utilizes a nonlinear factor graph as the underlying representation to provide loosely-coupled fusion of any number of sensing modalities. Tailored to the goal of enabling resilient robotic autonomy in GPS-denied and perceptually-degr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems S. 7153 - 7159
Hauptverfasser: Khedekar, Nikhil, Kulkarni, Mihir, Alexis, Kostas
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 23.10.2022
Schlagworte:
ISSN:2153-0866
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a framework for Multi-Modal SLAM (MIMOSA) that utilizes a nonlinear factor graph as the underlying representation to provide loosely-coupled fusion of any number of sensing modalities. Tailored to the goal of enabling resilient robotic autonomy in GPS-denied and perceptually-degraded environments, MIMOSA currently contains modules for pointcloud registration, fusion of multiple odometry estimates relying on visible-light and thermal vision, as well as inertial measurement propagation. A flexible back-end utilizes the estimates from various modalities as relative transformation factors. The method is designed to be robust to degeneracy through the maintenance and tracking of modality-specific health metrics, while also being inherently tolerant to sensor failure. We detail this framework alongside our implementation for handling high-rate asynchronous sensor measurements and evaluate its performance on data from autonomous subterranean robotic exploration missions using legged and aerial robots.
ISSN:2153-0866
DOI:10.1109/IROS47612.2022.9981108