MIMOSA: A Multi-Modal SLAM Framework for Resilient Autonomy against Sensor Degradation
This paper presents a framework for Multi-Modal SLAM (MIMOSA) that utilizes a nonlinear factor graph as the underlying representation to provide loosely-coupled fusion of any number of sensing modalities. Tailored to the goal of enabling resilient robotic autonomy in GPS-denied and perceptually-degr...
Uloženo v:
| Vydáno v: | Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems s. 7153 - 7159 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
23.10.2022
|
| Témata: | |
| ISSN: | 2153-0866 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper presents a framework for Multi-Modal SLAM (MIMOSA) that utilizes a nonlinear factor graph as the underlying representation to provide loosely-coupled fusion of any number of sensing modalities. Tailored to the goal of enabling resilient robotic autonomy in GPS-denied and perceptually-degraded environments, MIMOSA currently contains modules for pointcloud registration, fusion of multiple odometry estimates relying on visible-light and thermal vision, as well as inertial measurement propagation. A flexible back-end utilizes the estimates from various modalities as relative transformation factors. The method is designed to be robust to degeneracy through the maintenance and tracking of modality-specific health metrics, while also being inherently tolerant to sensor failure. We detail this framework alongside our implementation for handling high-rate asynchronous sensor measurements and evaluate its performance on data from autonomous subterranean robotic exploration missions using legged and aerial robots. |
|---|---|
| ISSN: | 2153-0866 |
| DOI: | 10.1109/IROS47612.2022.9981108 |