Improving Optimal Binarization with Update On-the-fly in G-PCC Entropy Coding: Probability Initialization and Adaptive Bounds Setting for Context Models

Geometry-based point cloud compression (G-PCC) uses Context-based Adaptive Binary Arithmetic Coding to encode the geometry and attribute information. The context information is built in context models for entropy coding. G-PCC adopts the Optimal Binarization with Update On-the-fly (OBUF) to reduce t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE International Symposium on Circuits and Systems proceedings s. 1 - 5
Hlavní autoři: Hao, Shidi, Wan, Shuai, Tian, Tengya, Zhang, Wei, Yang, Fuzheng
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 19.05.2024
Témata:
ISSN:2158-1525
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Geometry-based point cloud compression (G-PCC) uses Context-based Adaptive Binary Arithmetic Coding to encode the geometry and attribute information. The context information is built in context models for entropy coding. G-PCC adopts the Optimal Binarization with Update On-the-fly (OBUF) to reduce the number of context models. In the current design, however, the probability initialization for both fine-and coarse-grained contexts does not follow the principle of entropy continuation. Moreover, the mapping process to produce coarse-grained contexts is a combination of several fine-grained contexts, leading to an unstable update of probability for coarse-grained contexts, which affects the accuracy of the fine-grained context model in probability estimation.To address the underlying problems, we propose two approaches to improve OBUF: initializing the probabilities for fine-grained and coarse-grained contexts according to entropy continuation and setting the probability update upper and lower bounds for coarse-grained contexts adaptively. The experimental results demonstrate that the proposed technique is more consistent with the underlying principles of OBUF and significantly improves the performance of both octree-based and Trisoup-based geometry coding. Due to the theoretical consistency and outstanding performance, the proposed methods have been adopted into the state-of-the-art G-PCC.
AbstractList Geometry-based point cloud compression (G-PCC) uses Context-based Adaptive Binary Arithmetic Coding to encode the geometry and attribute information. The context information is built in context models for entropy coding. G-PCC adopts the Optimal Binarization with Update On-the-fly (OBUF) to reduce the number of context models. In the current design, however, the probability initialization for both fine-and coarse-grained contexts does not follow the principle of entropy continuation. Moreover, the mapping process to produce coarse-grained contexts is a combination of several fine-grained contexts, leading to an unstable update of probability for coarse-grained contexts, which affects the accuracy of the fine-grained context model in probability estimation.To address the underlying problems, we propose two approaches to improve OBUF: initializing the probabilities for fine-grained and coarse-grained contexts according to entropy continuation and setting the probability update upper and lower bounds for coarse-grained contexts adaptively. The experimental results demonstrate that the proposed technique is more consistent with the underlying principles of OBUF and significantly improves the performance of both octree-based and Trisoup-based geometry coding. Due to the theoretical consistency and outstanding performance, the proposed methods have been adopted into the state-of-the-art G-PCC.
Author Tian, Tengya
Wan, Shuai
Zhang, Wei
Yang, Fuzheng
Hao, Shidi
Author_xml – sequence: 1
  givenname: Shidi
  surname: Hao
  fullname: Hao, Shidi
  email: haoshidi@mail.nwpu.edu.cn
  organization: Northwestern Polytechnical University,School of Electronics and Information,Xi'an,China
– sequence: 2
  givenname: Shuai
  surname: Wan
  fullname: Wan, Shuai
  email: swan@nwpu.edu.cn
  organization: Northwestern Polytechnical University,School of Electronics and Information,Xi'an,China
– sequence: 3
  givenname: Tengya
  surname: Tian
  fullname: Tian, Tengya
  email: tiantengya@stu.xidian.edu.cn
  organization: Xidian University,School of Telecommunication Engineering,Xi'an,China
– sequence: 4
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  email: wzhang@xidian.edu.cn
  organization: Xidian University,School of Telecommunication Engineering,Xi'an,China
– sequence: 5
  givenname: Fuzheng
  surname: Yang
  fullname: Yang, Fuzheng
  email: fzhyang@mail.xidian.edu.cn
  organization: Xidian University,School of Telecommunication Engineering,Xi'an,China
BookMark eNo1kM1OwkAURkejiYC8gYv7AsX56bQdd9AgNsFAgqzJlN7KmDLTtCNan8THtUZZfcm3OCc5Q3JlnUVCgNEJY1TdZ5t0upFJHIYTTnk4YVTKhDN1QcYqVomQVAiqFLskA85kEjDJ5Q0Ztu0bpZzSiA_Id3asG3cy9hVWtTdHXcHMWN2YL-2Ns_Bh_AG2daE9wsoG_oBBWXVgLCyCdZrC3PrG1R2krugZD7BuXK5zUxnfQWaNN7o6o7QtYFro3nJCmLl3W7SwQe9_3aVreoT1-Onh2RVYtbfkutRVi-P_HZHt4_wlfQqWq0WWTpeB4TT0QYlMKq4Voor2GHMeJUjLknKkWvK4QFaIvVD7SGidJ_1VMpbniu9FmMcqomJE7v64BhF3ddMnaLrduaT4AQB5bTE
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ISCAS58744.2024.10558219
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350330991
EISSN 2158-1525
EndPage 5
ExternalDocumentID 10558219
Genre orig-research
GroupedDBID -~X
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i204t-fe1592a9ee96ce72268e0ff02e0a527de1d3c39c63aab8a52f11bb92c34b79603
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001268541102009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:04:49 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-fe1592a9ee96ce72268e0ff02e0a527de1d3c39c63aab8a52f11bb92c34b79603
PageCount 5
ParticipantIDs ieee_primary_10558219
PublicationCentury 2000
PublicationDate 2024-May-19
PublicationDateYYYYMMDD 2024-05-19
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-19
  day: 19
PublicationDecade 2020
PublicationTitle IEEE International Symposium on Circuits and Systems proceedings
PublicationTitleAbbrev ISCAS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020062
Score 2.2562141
Snippet Geometry-based point cloud compression (G-PCC) uses Context-based Adaptive Binary Arithmetic Coding to encode the geometry and attribute information. The...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
CABAC
Circuits and systems
Entropy
G-PCC
Geometry
OBUF
Performance gain
Point cloud compression
Probabilistic logic
Title Improving Optimal Binarization with Update On-the-fly in G-PCC Entropy Coding: Probability Initialization and Adaptive Bounds Setting for Context Models
URI https://ieeexplore.ieee.org/document/10558219
WOSCitedRecordID wos001268541102009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4qHvTiq-KbOXiN7iZps_Fml_oA0UJVvEmSnUChboutYv-JP9fM9qEePHhbArsD2TCZL_m-bxg7Low0GZHaI1jwXAWXcaeF5TKoNCBBgKpN5-ONvr3Nnp5MeypWr7QwiFiRz_CEHqu7_KLv3-io7JSaOWaCTD4XtW5MxFpzdEVqwBlVJzGn1538vFMnc_cIAoU6mb37q4tKtYlcrP0z_DqrfcvxoD3faDbYApabbPWHk-AW-5wfDsBdTAIvtgdNUtpOVZZAx63wMCB4D3clj1UfD70xdEu45O08hxYR1gdjyPsU4ozCuYmD9xiuiV9ke7NP2bKA88IOKE9Ck7oyDaGDFX0aYgUMld_Vxwioy1pvWGMPF637_IpPmy7wrkjUiAeMBY6wBtE0POpYnWWYhJAITGxd6ALTQnppfENa67I4FNLUOSO8VE5HOCS32VLZL3GHgVKFFzGFFM4EpbVz3iiBJkMhjcsSuctqNMnPg4mvxvNsfvf-GN9nK_Qr6e4-NQdsafT6hods2b-PusPXo2o1fAGaCLfJ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9owELYqtlK7l-2Dqrttt3Po1ZDYZhP3thvBgkoBCai4IdsZS0g0IB6r8k_6c-sJj24PPewtspQ4cqLxzPh7MPYl11KnBGoPxYLjytuU20QYLr2KPVIJUNp0_ugmvV46mejBgaxecmEQsQSfYY0uy7P8fOG21Cqrk5ljKkjk84yssxp7utapviI-4BGsE-l6Z5jdDhsk7x7KQKFqx7v_8VEpt5HWxRNf4BWr_iXkweC01bxmz7B4w84faQm-Zb9P7QHohzDw08zhjri2B54lUMMVxksq8KFf8JD3cT_fwayAez7IMmgSZH25g2xBU3yl6exew3sHHUIYmfnxUabI4TY3S4qUcEe-TGsYYgmghpADQ6l49WsD5LM2X1fZuNUcZW1-sF3gMxGpDfcYUhxhNKK-cZiE_CzFyPtIYGQaIskxzqWT2t1IY2wahnwcW6uFk8omoSCS71ilWBT4noFSuRMhiORWe5Uk1jqtBOoUhdQ2jeQlq9IiT5d7ZY3pcX2v_jP-mb1oj753p91O79sH9pI-K53kx_ojq2xWW_zEnruHzWy9ui7_jD9YubsU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Symposium+on+Circuits+and+Systems+proceedings&rft.atitle=Improving+Optimal+Binarization+with+Update+On-the-fly+in+G-PCC+Entropy+Coding%3A+Probability+Initialization+and+Adaptive+Bounds+Setting+for+Context+Models&rft.au=Hao%2C+Shidi&rft.au=Wan%2C+Shuai&rft.au=Tian%2C+Tengya&rft.au=Zhang%2C+Wei&rft.date=2024-05-19&rft.pub=IEEE&rft.eissn=2158-1525&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FISCAS58744.2024.10558219&rft.externalDocID=10558219