Variability Aware FET Model With Physics Knowledge Based Machine Learning

We present variability-aware, computationally efficient, models for Fin Field Effect Transistors (FinFETs) using various machine learning (ML) architectures. This paper provides a detailed comparison of the various architectures. Our physics knowledge-based artificial neural networks (ANNs) demonstr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) s. 1 - 3
Hlavní autoři: Sheelvardhan, Kumar, Guglani, Surila, Ehteshamuddin, M., Roy, Sourajeet, Dasgupta, Avirup
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 07.03.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present variability-aware, computationally efficient, models for Fin Field Effect Transistors (FinFETs) using various machine learning (ML) architectures. This paper provides a detailed comparison of the various architectures. Our physics knowledge-based artificial neural networks (ANNs) demonstrate unprecedented modeling efficiency. This is the first work presenting Prior Knowledge with Input Difference (PKID) ANN architecture for device modeling.
DOI:10.1109/EDTM55494.2023.10103099