Variability Aware FET Model With Physics Knowledge Based Machine Learning
We present variability-aware, computationally efficient, models for Fin Field Effect Transistors (FinFETs) using various machine learning (ML) architectures. This paper provides a detailed comparison of the various architectures. Our physics knowledge-based artificial neural networks (ANNs) demonstr...
Uloženo v:
| Vydáno v: | 2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) s. 1 - 3 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
07.03.2023
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present variability-aware, computationally efficient, models for Fin Field Effect Transistors (FinFETs) using various machine learning (ML) architectures. This paper provides a detailed comparison of the various architectures. Our physics knowledge-based artificial neural networks (ANNs) demonstrate unprecedented modeling efficiency. This is the first work presenting Prior Knowledge with Input Difference (PKID) ANN architecture for device modeling. |
|---|---|
| DOI: | 10.1109/EDTM55494.2023.10103099 |