Variability Aware FET Model With Physics Knowledge Based Machine Learning

We present variability-aware, computationally efficient, models for Fin Field Effect Transistors (FinFETs) using various machine learning (ML) architectures. This paper provides a detailed comparison of the various architectures. Our physics knowledge-based artificial neural networks (ANNs) demonstr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) s. 1 - 3
Hlavní autori: Sheelvardhan, Kumar, Guglani, Surila, Ehteshamuddin, M., Roy, Sourajeet, Dasgupta, Avirup
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 07.03.2023
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We present variability-aware, computationally efficient, models for Fin Field Effect Transistors (FinFETs) using various machine learning (ML) architectures. This paper provides a detailed comparison of the various architectures. Our physics knowledge-based artificial neural networks (ANNs) demonstrate unprecedented modeling efficiency. This is the first work presenting Prior Knowledge with Input Difference (PKID) ANN architecture for device modeling.
DOI:10.1109/EDTM55494.2023.10103099