Variability Aware FET Model With Physics Knowledge Based Machine Learning

We present variability-aware, computationally efficient, models for Fin Field Effect Transistors (FinFETs) using various machine learning (ML) architectures. This paper provides a detailed comparison of the various architectures. Our physics knowledge-based artificial neural networks (ANNs) demonstr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) S. 1 - 3
Hauptverfasser: Sheelvardhan, Kumar, Guglani, Surila, Ehteshamuddin, M., Roy, Sourajeet, Dasgupta, Avirup
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 07.03.2023
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present variability-aware, computationally efficient, models for Fin Field Effect Transistors (FinFETs) using various machine learning (ML) architectures. This paper provides a detailed comparison of the various architectures. Our physics knowledge-based artificial neural networks (ANNs) demonstrate unprecedented modeling efficiency. This is the first work presenting Prior Knowledge with Input Difference (PKID) ANN architecture for device modeling.
DOI:10.1109/EDTM55494.2023.10103099