Fast and accurate object recognition based on tactile data by using Dendrite Net

Tactile perception plays an important role in a variety of applications such as object detection and robotic grasping of objects. However, there is a lack of an intelligent object recognition algorithm based on tactile data with small storage space, fast computing speed, and high accuracy. Inspired...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE International Instrumentation and Measurement Technology Conference (Online) s. 01 - 06
Hlavní autoři: Liang, Haonan, Gao, Tianshi, Jiangtao Luo, Tian Gao, Wang, Jiang, Deng, Bin
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 22.05.2023
Témata:
ISSN:2642-2077
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Tactile perception plays an important role in a variety of applications such as object detection and robotic grasping of objects. However, there is a lack of an intelligent object recognition algorithm based on tactile data with small storage space, fast computing speed, and high accuracy. Inspired by the involvement of dendrites of biological neurons in the computation of neural networks, we introduce dendritic computation to the task of object recognition based on tactile pressure data. Firstly, we design a tactile acquisition glove with a flexible film sensor array based on force-sensitive-resistors to obtain the pressure of the object. We conduct experiments by using this haptic acquisition device and obtain 24,500 tactile pressure images. Then we determine the optimal parameters of the DD model on the tactile pressure data by adjusting the number of DD modules. By using the DD model, we get information about the logical relationships between the tactile pressure image features. Finally, we achieve object recognition by capturing the pressure signal of the object and converting it into a pressure image. We train the model to achieve 99.84% accuracy, while the model achieves a storage space of 1.72MB and a recognition speed of 0.75ms, which outperforms existing algorithms in terms of real-time predictability, model storage space, and accuracy. This paper has significant implications for the future development of haptic applications in robotics.
AbstractList Tactile perception plays an important role in a variety of applications such as object detection and robotic grasping of objects. However, there is a lack of an intelligent object recognition algorithm based on tactile data with small storage space, fast computing speed, and high accuracy. Inspired by the involvement of dendrites of biological neurons in the computation of neural networks, we introduce dendritic computation to the task of object recognition based on tactile pressure data. Firstly, we design a tactile acquisition glove with a flexible film sensor array based on force-sensitive-resistors to obtain the pressure of the object. We conduct experiments by using this haptic acquisition device and obtain 24,500 tactile pressure images. Then we determine the optimal parameters of the DD model on the tactile pressure data by adjusting the number of DD modules. By using the DD model, we get information about the logical relationships between the tactile pressure image features. Finally, we achieve object recognition by capturing the pressure signal of the object and converting it into a pressure image. We train the model to achieve 99.84% accuracy, while the model achieves a storage space of 1.72MB and a recognition speed of 0.75ms, which outperforms existing algorithms in terms of real-time predictability, model storage space, and accuracy. This paper has significant implications for the future development of haptic applications in robotics.
Author Gao, Tianshi
Deng, Bin
Liang, Haonan
Jiangtao Luo, Tian Gao
Wang, Jiang
Author_xml – sequence: 1
  givenname: Haonan
  surname: Liang
  fullname: Liang, Haonan
  email: lianghaonan@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University,Tianjin,China
– sequence: 2
  givenname: Tianshi
  surname: Gao
  fullname: Gao, Tianshi
  email: tianshi@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University,Tianjin,China
– sequence: 3
  givenname: Tian Gao
  surname: Jiangtao Luo
  fullname: Jiangtao Luo, Tian Gao
  email: luojiangtao@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University,Tianjin,China
– sequence: 4
  givenname: Jiang
  surname: Wang
  fullname: Wang, Jiang
  email: jiangwang@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University,Tianjin,China
– sequence: 5
  givenname: Bin
  surname: Deng
  fullname: Deng, Bin
  email: dengbin@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University,Tianjin,China
BookMark eNo1kMtOwzAQRQ0CiVL6Byz8AynjcWzHS1RelcpjUdbV2J5UrkqCEnfRv6cSsLp3c-6R7rW46PqOhZAK5kqBv1vi63phtKqbOQLquQLlLKA_EzPvGmWtqY1utDsXE7Q1VgjOXYnZOO4AQCPUqOuJ-HiisUjqkqQYDwMVln3YcSxy4Nhvu1xy38lAIyd5KoViyXuWiQrJcJSHMXdb-cBdGvIJfeNyIy5b2o88-8up-Hx6XC9eqtX783Jxv6rySV2qVgEa9NwmwKjAKGUctdhqaxJ6HayzoSbvSac2eRcVBwpNsOCDtsoaPRW3v7uZmTffQ_6i4bj5P0H_AKmIUoc
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/I2MTC53148.2023.10176029
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665453837
1665453834
EISSN 2642-2077
EndPage 06
ExternalDocumentID 10176029
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i204t-f102529efd02c1051157af2f365d293b676b4a99a3dfd97c1ebab8b609b361653
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001039259600147&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:09:04 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-f102529efd02c1051157af2f365d293b676b4a99a3dfd97c1ebab8b609b361653
PageCount 6
ParticipantIDs ieee_primary_10176029
PublicationCentury 2000
PublicationDate 2023-May-22
PublicationDateYYYYMMDD 2023-05-22
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-May-22
  day: 22
PublicationDecade 2020
PublicationTitle IEEE International Instrumentation and Measurement Technology Conference (Online)
PublicationTitleAbbrev I2MTC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204234
Score 1.8324444
Snippet Tactile perception plays an important role in a variety of applications such as object detection and robotic grasping of objects. However, there is a lack of...
SourceID ieee
SourceType Publisher
StartPage 01
SubjectTerms Data models
Dendrite Net
Dendrites (neurons)
Feature extraction
object recognition
Predictive models
Real-time systems
Robot sensing systems
robotic
tactile pressure
Training
Title Fast and accurate object recognition based on tactile data by using Dendrite Net
URI https://ieeexplore.ieee.org/document/10176029
WOSCitedRecordID wos001039259600147&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA62eNCLW8WdHLxOO01mspyrRQ-WHir0VrK8SEFmpE4F_7156aIePHgLIYFs8D5evu97hNwG76SyVmc5oKl2KGRmOOeZ0f1kF2cLuSo2IUcjNZ3q8VqsnrQwAJDIZ9DFZvrL97VbYqqsh89H5Ey3SEtKsRJrbRMqnCHFo9iwdXLde2RPk0F8Y4nCxXh3M_1XIZUUR4YH_1zBIel8K_LoeBtrjsgOVMdk_4eZ4AkZD817Q03lqXFuiQ4QtLaYZaFbklBdUYxansZGg4qGV6BIEaX2kyIB_oXeQeUXEYXSETQd8jy8nwwesnW9hGwe995kIYKFkmkIPmcu4ib00TGBBS5KH6O6FVLYwmhtuA9eS9cHa6yyIteWi74o-SlpV3UFZ4RKp5ziKsILFwEKDgCwoZQ6KMeEVeekg4cze1tZYsw253LxR_8l2cMrwG93xq5Iu1ks4Zrsuo9m_r64SRf5BYK8nUw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxGA1aBfXiVnE3B6_TTpOZLOdqabEdeqjQW8kqBZkp7VTw35tvuqgHD95CCCEbfI8v770PoUdvDRdayyh2YKrtEx4pSmmkZKuyi9MJXxWb4FkmxmM5XIvVKy2Mc64in7kGNKu_fFuYJaTKmvB8WEzkLtqD0llrudY2pUIJkDySDV8nls0eGYza4ZVVJC5CG5sJfpVSqSJJ5_ifazhB9W9NHh5uo80p2nH5GTr6YSd4joYdtSixyi1WxizBAwIXGvIseEsTKnIMccvi0ChB0_DuMJBEsf7EQIF_w08ut_OAQ3Hmyjp67TyP2t1oXTEhmoa9l5EPcCEl0nkbExOQEzjpKE88ZakNcV0zznSipFTUeiu5aTmttNAslpqyFkvpBarlRe4uEeZGGEFFABgmQBQY4Jz2KZdeGMK0uEJ1OJzJbGWKMdmcy_Uf_Q_ooDsa9Cf9XvZygw7hOuATnpBbVCvnS3eH9s1HOV3M76tL_QLmSqCV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Instrumentation+and+Measurement+Technology+Conference+%28Online%29&rft.atitle=Fast+and+accurate+object+recognition+based+on+tactile+data+by+using+Dendrite+Net&rft.au=Liang%2C+Haonan&rft.au=Gao%2C+Tianshi&rft.au=Jiangtao+Luo%2C+Tian+Gao&rft.au=Wang%2C+Jiang&rft.date=2023-05-22&rft.pub=IEEE&rft.eissn=2642-2077&rft.spage=01&rft.epage=06&rft_id=info:doi/10.1109%2FI2MTC53148.2023.10176029&rft.externalDocID=10176029