A Hybrid Model for QoS Prediction based on Improved Conditional Variational Autoencoder
As a nonfunctional attribute of Web services, Quality of Service (QoS) is a crucial criterion that researchers utilize to develop personalized service recommendation. The QoS history is thin and contains noisy data because of the network environment and other inevitable factors. In order to increase...
Saved in:
| Published in: | 2022 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom) pp. 339 - 346 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.12.2022
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As a nonfunctional attribute of Web services, Quality of Service (QoS) is a crucial criterion that researchers utilize to develop personalized service recommendation. The QoS history is thin and contains noisy data because of the network environment and other inevitable factors. In order to increase the effectiveness of Web service recommendation, it is essential to accurately predict the missing QoS values. Therefore, a model for QoS prediction based on improved Conditional Variational Autoencoder is proposed in order to improve the prediction accuracy of missing QoS. The Bias based Singular Value Decomposition (BiasSVD) is employed by the model to pre-populate the initial sparse QoS matrix with missing values. By improved Conditional Variational Autoencoder, the pre-filled matrix is learned and the QoS is reconstructed. Then, the users' plausible similar neighbors are filtered using the Pearson Correlation Coefficient and Independent Sample T-test. The missing QoS is predicted by combining the reconstruction matrix. Last but not least, the experimental results on the actual dataset WSDream demonstrate that the model improves the QoS prediction accuracy to considerable degree. |
|---|---|
| AbstractList | As a nonfunctional attribute of Web services, Quality of Service (QoS) is a crucial criterion that researchers utilize to develop personalized service recommendation. The QoS history is thin and contains noisy data because of the network environment and other inevitable factors. In order to increase the effectiveness of Web service recommendation, it is essential to accurately predict the missing QoS values. Therefore, a model for QoS prediction based on improved Conditional Variational Autoencoder is proposed in order to improve the prediction accuracy of missing QoS. The Bias based Singular Value Decomposition (BiasSVD) is employed by the model to pre-populate the initial sparse QoS matrix with missing values. By improved Conditional Variational Autoencoder, the pre-filled matrix is learned and the QoS is reconstructed. Then, the users' plausible similar neighbors are filtered using the Pearson Correlation Coefficient and Independent Sample T-test. The missing QoS is predicted by combining the reconstruction matrix. Last but not least, the experimental results on the actual dataset WSDream demonstrate that the model improves the QoS prediction accuracy to considerable degree. |
| Author | Wu, Mengwei Wang, Yichao Lu, Qin Li, Weixiao Chen, Huanyu Wang, Yingxue |
| Author_xml | – sequence: 1 givenname: Mengwei surname: Wu fullname: Wu, Mengwei email: wmw18265417820@163.com organization: School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences),Jinan,China – sequence: 2 givenname: Qin surname: Lu fullname: Lu, Qin email: 54903172@qq.com organization: School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences),Jinan,China – sequence: 3 givenname: Yingxue surname: Wang fullname: Wang, Yingxue email: wang195439@163.com organization: School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences),Jinan,China – sequence: 4 givenname: Yichao surname: Wang fullname: Wang, Yichao email: 1286387656@qq.com organization: School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences),Jinan,China – sequence: 5 givenname: Huanyu surname: Chen fullname: Chen, Huanyu email: 879817980@qq.com organization: School of Information and Automation Engineering, Qilu University of Technology (Shandong Academy of Sciences),Jinan,China – sequence: 6 givenname: Weixiao surname: Li fullname: Li, Weixiao email: liweixiao@chinamobile.com organization: Information Technology Center, China Mobile Communication Group Co., Ltd,Beijing,China |
| BookMark | eNotzN1KwzAYxvEIeqBzd-BBbqDzTdIky2GtHxtMnNSPw5EmbyDQNSPthN29FXf0_OCB_w257FOPhBgGC8bA3K-bbVU8PNZdOvqiSS7ark77ojkOo439RKmZ1gsOnC8AQMIFmRu9ZErJUpVGwzX5rujq1Obo6Wvy2NGQMn1PDd1m9NGNMfW0tQN6OmG9P-T0M7lOvY9_n-3ol83Rnl0dx4S9m0L5llwF2w04P--MfD4_fdSrYvP2sq6rTRE5lGOBWjDhnGIiMO5bkAECSC7LSZpLdApQOiwNt4K1qhV-uXTKIJhQOq-DmJG7_25ExN0hx73Npx0D0KCkEL8DFFnt |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ISPA-BDCloud-SocialCom-SustainCom57177.2022.00050 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665464970 1665464976 |
| EndPage | 346 |
| ExternalDocumentID | 10070653 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Shandong Province Key R&D Program grantid: 2019GGX101026 funderid: 10.13039/100014103 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i204t-e7313cc613f12db05f0f0525405f725ec60e5ce492a31b6b3d88c69e09f4cd7f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001027433000043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jan 18 11:14:49 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-e7313cc613f12db05f0f0525405f725ec60e5ce492a31b6b3d88c69e09f4cd7f3 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10070653 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Dec. |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec. |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom) |
| PublicationTitleAbbrev | ISPA-BDCLOUD-SOCIALCOM-SUSTAINCOM |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8220905 |
| Snippet | As a nonfunctional attribute of Web services, Quality of Service (QoS) is a crucial criterion that researchers utilize to develop personalized service... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 339 |
| SubjectTerms | BiasSVD Conditional Variational Autoencoder Correlation coefficient Independent Sample T-test Matrix decomposition Noise measurement Predictive models QoS prediction Quality of service Service recommendation Sparse matrices Web services |
| Title | A Hybrid Model for QoS Prediction based on Improved Conditional Variational Autoencoder |
| URI | https://ieeexplore.ieee.org/document/10070653 |
| WOSCitedRecordID | wos001027433000043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5sEfGkYsU3e_C6drPZJJtjrZZ6KZX66K0k-4BCaaQmgv_emSQ-Lh68DSGEMLvLvPb7PoArleEmwmPDSUKAqziWPFPKcG2NNcLhqke2FptIJhM9n6fTFqxeY2Gcc_XlM3dNZj3Lt4WpqFXWp4k-cal2oJMkcQPW2oG05c3s38-mA35zO1wVleUNuhUPFZ81SCQ0I6xdEqwJZU3SSVD7X4oqdUAZ7f3zV_ah9wPNY9PvoHMAW259CC8DNv4g6BUjabMVw0SUPRQzfJHGMOR6RtHKMjSaLgLa-EG7bDqB7Bkr5rYryAZVWRC7pXWbHjyN7h6HY94qJvClFKrkLgmD0BgM0T6QNheRF56E6jAr84mMnInR_capVGZhkMd5aLU2cepE6pWxiQ-PoLsu1u4YWI6lVKojkwkvFdYkGhPFQIsslD7FtCs8gR55ZfHakGIsvhxy-sfzM9glxzc3Qc6hW24qdwHb5r1cvm0u66X8BFbtoTI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60inpSseLbPXhdm2w2r2OtlhZrqbRqbyXZBxRKIzUR_PfOJPFx8eBtWJYQZnaZ137zAVzJBA8RXhtOFAJcBoHgiZSKR1pp5Ri0uq9LsolwOIym03hUg9VLLIwxpnx8Zq5JLHv5OlMFlcpa1NGnWarrsEHUWTVcawvienJmqz8etfnNbWeRFZpX-Fa8VnxcYZFQ9DF7CTErFOWYTgLb_-JUKV1Kd_efP7MHzR9wHht9u519WDPLA3hps94Hga8YkZstGIai7DEb40ZqxJDyGfkrzVCo6ggo4wf1vKoFsmfMmeu6IGsXeUbzLbVZNeGpezfp9HjNmcDnwpE5N6Hnekqhk7au0KnjW8cSVR3GZTYUvlEBGkAZGYvEc9Mg9XQUqSA2Tmyl0qH1DqGxzJbmCFiKyVQc-SpxrJCYlUQYKrqRk3jCxhh4ecfQJK3MXquxGLMvhZz8sX4J273Jw2A26A_vT2GHjFC9CzmDRr4qzDlsqvd8_ra6KM36Ceq7pHs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Intl+Conf+on+Parallel+%26+Distributed+Processing+with+Applications%2C+Big+Data+%26+Cloud+Computing%2C+Sustainable+Computing+%26+Communications%2C+Social+Computing+%26+Networking+%28ISPA%2FBDCloud%2FSocialCom%2FSustainCom%29&rft.atitle=A+Hybrid+Model+for+QoS+Prediction+based+on+Improved+Conditional+Variational+Autoencoder&rft.au=Wu%2C+Mengwei&rft.au=Lu%2C+Qin&rft.au=Wang%2C+Yingxue&rft.au=Wang%2C+Yichao&rft.date=2022-12-01&rft.pub=IEEE&rft.spage=339&rft.epage=346&rft_id=info:doi/10.1109%2FISPA-BDCloud-SocialCom-SustainCom57177.2022.00050&rft.externalDocID=10070653 |