A Hybrid Model for QoS Prediction based on Improved Conditional Variational Autoencoder

As a nonfunctional attribute of Web services, Quality of Service (QoS) is a crucial criterion that researchers utilize to develop personalized service recommendation. The QoS history is thin and contains noisy data because of the network environment and other inevitable factors. In order to increase...

Full description

Saved in:
Bibliographic Details
Published in:2022 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom) pp. 339 - 346
Main Authors: Wu, Mengwei, Lu, Qin, Wang, Yingxue, Wang, Yichao, Chen, Huanyu, Li, Weixiao
Format: Conference Proceeding
Language:English
Published: IEEE 01.12.2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As a nonfunctional attribute of Web services, Quality of Service (QoS) is a crucial criterion that researchers utilize to develop personalized service recommendation. The QoS history is thin and contains noisy data because of the network environment and other inevitable factors. In order to increase the effectiveness of Web service recommendation, it is essential to accurately predict the missing QoS values. Therefore, a model for QoS prediction based on improved Conditional Variational Autoencoder is proposed in order to improve the prediction accuracy of missing QoS. The Bias based Singular Value Decomposition (BiasSVD) is employed by the model to pre-populate the initial sparse QoS matrix with missing values. By improved Conditional Variational Autoencoder, the pre-filled matrix is learned and the QoS is reconstructed. Then, the users' plausible similar neighbors are filtered using the Pearson Correlation Coefficient and Independent Sample T-test. The missing QoS is predicted by combining the reconstruction matrix. Last but not least, the experimental results on the actual dataset WSDream demonstrate that the model improves the QoS prediction accuracy to considerable degree.
AbstractList As a nonfunctional attribute of Web services, Quality of Service (QoS) is a crucial criterion that researchers utilize to develop personalized service recommendation. The QoS history is thin and contains noisy data because of the network environment and other inevitable factors. In order to increase the effectiveness of Web service recommendation, it is essential to accurately predict the missing QoS values. Therefore, a model for QoS prediction based on improved Conditional Variational Autoencoder is proposed in order to improve the prediction accuracy of missing QoS. The Bias based Singular Value Decomposition (BiasSVD) is employed by the model to pre-populate the initial sparse QoS matrix with missing values. By improved Conditional Variational Autoencoder, the pre-filled matrix is learned and the QoS is reconstructed. Then, the users' plausible similar neighbors are filtered using the Pearson Correlation Coefficient and Independent Sample T-test. The missing QoS is predicted by combining the reconstruction matrix. Last but not least, the experimental results on the actual dataset WSDream demonstrate that the model improves the QoS prediction accuracy to considerable degree.
Author Wu, Mengwei
Wang, Yichao
Lu, Qin
Li, Weixiao
Chen, Huanyu
Wang, Yingxue
Author_xml – sequence: 1
  givenname: Mengwei
  surname: Wu
  fullname: Wu, Mengwei
  email: wmw18265417820@163.com
  organization: School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences),Jinan,China
– sequence: 2
  givenname: Qin
  surname: Lu
  fullname: Lu, Qin
  email: 54903172@qq.com
  organization: School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences),Jinan,China
– sequence: 3
  givenname: Yingxue
  surname: Wang
  fullname: Wang, Yingxue
  email: wang195439@163.com
  organization: School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences),Jinan,China
– sequence: 4
  givenname: Yichao
  surname: Wang
  fullname: Wang, Yichao
  email: 1286387656@qq.com
  organization: School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences),Jinan,China
– sequence: 5
  givenname: Huanyu
  surname: Chen
  fullname: Chen, Huanyu
  email: 879817980@qq.com
  organization: School of Information and Automation Engineering, Qilu University of Technology (Shandong Academy of Sciences),Jinan,China
– sequence: 6
  givenname: Weixiao
  surname: Li
  fullname: Li, Weixiao
  email: liweixiao@chinamobile.com
  organization: Information Technology Center, China Mobile Communication Group Co., Ltd,Beijing,China
BookMark eNotzN1KwzAYxvEIeqBzd-BBbqDzTdIky2GtHxtMnNSPw5EmbyDQNSPthN29FXf0_OCB_w257FOPhBgGC8bA3K-bbVU8PNZdOvqiSS7ark77ojkOo439RKmZ1gsOnC8AQMIFmRu9ZErJUpVGwzX5rujq1Obo6Wvy2NGQMn1PDd1m9NGNMfW0tQN6OmG9P-T0M7lOvY9_n-3ol83Rnl0dx4S9m0L5llwF2w04P--MfD4_fdSrYvP2sq6rTRE5lGOBWjDhnGIiMO5bkAECSC7LSZpLdApQOiwNt4K1qhV-uXTKIJhQOq-DmJG7_25ExN0hx73Npx0D0KCkEL8DFFnt
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISPA-BDCloud-SocialCom-SustainCom57177.2022.00050
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665464970
1665464976
EndPage 346
ExternalDocumentID 10070653
Genre orig-research
GrantInformation_xml – fundername: Shandong Province Key R&D Program
  grantid: 2019GGX101026
  funderid: 10.13039/100014103
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i204t-e7313cc613f12db05f0f0525405f725ec60e5ce492a31b6b3d88c69e09f4cd7f3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001027433000043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jan 18 11:14:49 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-e7313cc613f12db05f0f0525405f725ec60e5ce492a31b6b3d88c69e09f4cd7f3
PageCount 8
ParticipantIDs ieee_primary_10070653
PublicationCentury 2000
PublicationDate 2022-Dec.
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.
PublicationDecade 2020
PublicationTitle 2022 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom)
PublicationTitleAbbrev ISPA-BDCLOUD-SOCIALCOM-SUSTAINCOM
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8220905
Snippet As a nonfunctional attribute of Web services, Quality of Service (QoS) is a crucial criterion that researchers utilize to develop personalized service...
SourceID ieee
SourceType Publisher
StartPage 339
SubjectTerms BiasSVD
Conditional Variational Autoencoder
Correlation coefficient
Independent Sample T-test
Matrix decomposition
Noise measurement
Predictive models
QoS prediction
Quality of service
Service recommendation
Sparse matrices
Web services
Title A Hybrid Model for QoS Prediction based on Improved Conditional Variational Autoencoder
URI https://ieeexplore.ieee.org/document/10070653
WOSCitedRecordID wos001027433000043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5sEfGkYsU3e_C6drPZJJtjrZZ6KZX66K0k-4BCaaQmgv_emSQ-Lh68DSGEMLvLvPb7PoArleEmwmPDSUKAqziWPFPKcG2NNcLhqke2FptIJhM9n6fTFqxeY2Gcc_XlM3dNZj3Lt4WpqFXWp4k-cal2oJMkcQPW2oG05c3s38-mA35zO1wVleUNuhUPFZ81SCQ0I6xdEqwJZU3SSVD7X4oqdUAZ7f3zV_ah9wPNY9PvoHMAW259CC8DNv4g6BUjabMVw0SUPRQzfJHGMOR6RtHKMjSaLgLa-EG7bDqB7Bkr5rYryAZVWRC7pXWbHjyN7h6HY94qJvClFKrkLgmD0BgM0T6QNheRF56E6jAr84mMnInR_capVGZhkMd5aLU2cepE6pWxiQ-PoLsu1u4YWI6lVKojkwkvFdYkGhPFQIsslD7FtCs8gR55ZfHakGIsvhxy-sfzM9glxzc3Qc6hW24qdwHb5r1cvm0u66X8BFbtoTI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60inpSseLbPXhdm2w2r2OtlhZrqbRqbyXZBxRKIzUR_PfOJPFx8eBtWJYQZnaZ137zAVzJBA8RXhtOFAJcBoHgiZSKR1pp5Ri0uq9LsolwOIym03hUg9VLLIwxpnx8Zq5JLHv5OlMFlcpa1NGnWarrsEHUWTVcawvienJmqz8etfnNbWeRFZpX-Fa8VnxcYZFQ9DF7CTErFOWYTgLb_-JUKV1Kd_efP7MHzR9wHht9u519WDPLA3hps94Hga8YkZstGIai7DEb40ZqxJDyGfkrzVCo6ggo4wf1vKoFsmfMmeu6IGsXeUbzLbVZNeGpezfp9HjNmcDnwpE5N6Hnekqhk7au0KnjW8cSVR3GZTYUvlEBGkAZGYvEc9Mg9XQUqSA2Tmyl0qH1DqGxzJbmCFiKyVQc-SpxrJCYlUQYKrqRk3jCxhh4ecfQJK3MXquxGLMvhZz8sX4J273Jw2A26A_vT2GHjFC9CzmDRr4qzDlsqvd8_ra6KM36Ceq7pHs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Intl+Conf+on+Parallel+%26+Distributed+Processing+with+Applications%2C+Big+Data+%26+Cloud+Computing%2C+Sustainable+Computing+%26+Communications%2C+Social+Computing+%26+Networking+%28ISPA%2FBDCloud%2FSocialCom%2FSustainCom%29&rft.atitle=A+Hybrid+Model+for+QoS+Prediction+based+on+Improved+Conditional+Variational+Autoencoder&rft.au=Wu%2C+Mengwei&rft.au=Lu%2C+Qin&rft.au=Wang%2C+Yingxue&rft.au=Wang%2C+Yichao&rft.date=2022-12-01&rft.pub=IEEE&rft.spage=339&rft.epage=346&rft_id=info:doi/10.1109%2FISPA-BDCloud-SocialCom-SustainCom57177.2022.00050&rft.externalDocID=10070653