Optimizing Network Slicing in Distributed Large Scale Infrastructures: From Heuristics to Controlled Deep Reinforcement Learning

This paper summarizes the PhD thesis and the 10 associated publications on the optimization of network slice placement in large-scale distributed infrastructures by focusing on online heuristics and approaches based on Deep Reinforcement Learning (DRL). First, we rely on Integer Linear Programming (...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/IFIP Network Operations and Management Symposium s. 1 - 6
Hlavní autoři: Esteves, Jose Jurandir Alves, Boubendir, Amina, Guillemin, Fabrice, Sens, Pierre
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 08.05.2023
Témata:
ISSN:2374-9709
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper summarizes the PhD thesis and the 10 associated publications on the optimization of network slice placement in large-scale distributed infrastructures by focusing on online heuristics and approaches based on Deep Reinforcement Learning (DRL). First, we rely on Integer Linear Programming (ILP) to propose a data model for on-Edge and on-network slice placement. Second, we leverage an approach called Power of Two Choices (P2C) to propose an online heuristic adapted to support placement on large-scale distributed infrastructures while incorporating Edge-specific constraints like latency. Finally, we investigate the use of Machine Learning (ML) methods, specifically DRL, to increase the scalability and automation of network slice placement by considering a multi-objective optimization approach to the problem. We will go through the extensive evaluation work that provide encouraging results about the advantages of the proposed approaches when used in realistic network scenarios.
AbstractList This paper summarizes the PhD thesis and the 10 associated publications on the optimization of network slice placement in large-scale distributed infrastructures by focusing on online heuristics and approaches based on Deep Reinforcement Learning (DRL). First, we rely on Integer Linear Programming (ILP) to propose a data model for on-Edge and on-network slice placement. Second, we leverage an approach called Power of Two Choices (P2C) to propose an online heuristic adapted to support placement on large-scale distributed infrastructures while incorporating Edge-specific constraints like latency. Finally, we investigate the use of Machine Learning (ML) methods, specifically DRL, to increase the scalability and automation of network slice placement by considering a multi-objective optimization approach to the problem. We will go through the extensive evaluation work that provide encouraging results about the advantages of the proposed approaches when used in realistic network scenarios.
Author Guillemin, Fabrice
Esteves, Jose Jurandir Alves
Sens, Pierre
Boubendir, Amina
Author_xml – sequence: 1
  givenname: Jose Jurandir Alves
  surname: Esteves
  fullname: Esteves, Jose Jurandir Alves
  email: josejurandir.alves@mercadolivre.com
  organization: Mercado Livre,Brazil
– sequence: 2
  givenname: Amina
  surname: Boubendir
  fullname: Boubendir, Amina
  email: amina.boubendir@airbus.com
  organization: Airbus Defence and Space,France
– sequence: 3
  givenname: Fabrice
  surname: Guillemin
  fullname: Guillemin, Fabrice
  email: fabrice.guillemin@orange.com
  organization: Orange Labs,France
– sequence: 4
  givenname: Pierre
  surname: Sens
  fullname: Sens, Pierre
  email: pierre.sens@lip6.fr
  organization: Sorbonne Université / CNRS / Inria,France,LIP6
BookMark eNo1kN1KwzAcxaMouM29gWBeoDVfTRbvZHNuUDdwej3S9N8RbdORpohe-ehW1KvD4fA7B84YnfnWA0LXlKSUEn2z2T7uMqnZLGWE8ZQSmgme8RM01WpGpcyEUlTSUzRiXIlEK6Iv0LjrXgkRinAyQl_bY3SN-3T-gDcQ39vwhne1sz_eebxwXQyu6COUODfhAHhnTQ147atghqi3sQ_Q3eJlaBu8gj4MgLMdji2etz6Gtq4HdAFwxE_gfNUGCw34iHMwwQ8rl-i8MnUH0z-doJfl_fN8leTbh_X8Lk8cIyImwIBTLQXXihpWWC2l5bwEw4xSqipLYKyUGWOVMIyJmQQqiqKijNsMdMn5BF399joA2B-Da0z42P8_xr8BcGZk6w
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/NOMS56928.2023.10154353
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665477161
1665477164
EISSN 2374-9709
EndPage 6
ExternalDocumentID 10154353
Genre orig-research
GroupedDBID 6IE
6IH
6IK
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i204t-e2e319643971a2bc966c33dea2a777fdde22d6522f4a22486e14bbf123c5e9d33
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001555653500102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:21:39 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-e2e319643971a2bc966c33dea2a777fdde22d6522f4a22486e14bbf123c5e9d33
PageCount 6
ParticipantIDs ieee_primary_10154353
PublicationCentury 2000
PublicationDate 2023-May-8
PublicationDateYYYYMMDD 2023-05-08
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-May-8
  day: 08
PublicationDecade 2020
PublicationTitle IEEE/IFIP Network Operations and Management Symposium
PublicationTitleAbbrev NOMS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0047030
Score 2.218434
Snippet This paper summarizes the PhD thesis and the 10 associated publications on the optimization of network slice placement in large-scale distributed...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Automation
Deep learning
Deep Reinforcement Learning
Focusing
Heuristics
Integer linear programming
Large-scale infrastructures
Network Functions Virtualization
Network slicing
Optimization
Placement
Reinforcement learning
Scalability
Title Optimizing Network Slicing in Distributed Large Scale Infrastructures: From Heuristics to Controlled Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/10154353
WOSCitedRecordID wos001555653500102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxFG6EeNCLG8Y9PXgdZDpLGa8gwUQHIppwI11eySQwQxA8ePKn-9oZXA4evLVNmibvtf26fO97hFwL4yvEIeNxENILDZYSJnAuBzqIJFgNKe2STfA0bY_HybAKVnexMADgyGfQtEX3l68LtbZPZbjCEfCDKKiRGudxGay12XZDO3UrApffSm7SweMoihNm6VssaG66_kqi4jCkt_fP0fdJ4zsajw6_cOaAbEF-SHZ_CAkekY8Brvx59o4VmpbEbjqa2U_zKc1y2rXquDaxFWj6YKnfdISuAXqfm6UoFWTXeO2-pb1lMad9WFfyzXRV0E7JZZ9h1y7Agj6B01pV7lmRVvKs0wZ56d09d_pelVvBy1grXHnAoNTiSrgvmFR461HoHxDoKM4NbnqM6RgPZyYUiPLtGPxQSoM4pyJIdBAck3pe5HBCKBgjtG8iY6QMNR63WjyWAuvcMC6EOSUNa8zJopTPmGzsePZH-znZsS5zrML2BamjFeCSbKu3Vfa6vHJO_wS_0LHI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIAELryLeeGBNSZxXw9pStaJNK1oktsqOz1WkNqlKy8DET-fspDwGBjY7khXp7uzPj---I-SWKydBHFJWCFxYnsJWxDjGsitdX4DWkJKm2EQYx_WXl2hQJqubXBgAMOQzqOmmecuXebLSV2U4wxHwXd_dJFu-5zG7SNdaL7yeDt6SwuXY0V3c7w39IGKawMXc2nrwrzIqBkVa-__8_wGpfufj0cEX0hySDciOyN4PKcFj8tHHuT9L37FD44LaTYdT_Ww-oWlGm1ofV5e2Akm7mvxNh-gcoJ1MLXihIbvCg_c9bS3yGW3DqhRwpsucNgo2-xSHNgHm9AmM2mpiLhZpKdA6qZLn1sOo0bbK6gpWymxvaQGDQo0rCh3ORILnngQ9BBxdFYYKlz3GZIDbM-VxxPl6AI4nhEKkS3yIpOuekEqWZ3BKKCjFpaN8pYTwJG647DAQHPuhYiHn6oxUtTHH80JAY7y24_kf32_ITnvU6467nfjxguxq9xmOYf2SVNAicEW2k7dl-rq4NgHwCSbTtQ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FIFIP+Network+Operations+and+Management+Symposium&rft.atitle=Optimizing+Network+Slicing+in+Distributed+Large+Scale+Infrastructures%3A+From+Heuristics+to+Controlled+Deep+Reinforcement+Learning&rft.au=Esteves%2C+Jose+Jurandir+Alves&rft.au=Boubendir%2C+Amina&rft.au=Guillemin%2C+Fabrice&rft.au=Sens%2C+Pierre&rft.date=2023-05-08&rft.pub=IEEE&rft.eissn=2374-9709&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FNOMS56928.2023.10154353&rft.externalDocID=10154353