Recurrent Nerual Imaging: An Evolutionary Approach for Mixed Possion-Gaussian Image Denoising
Recurrent neural networks (RNNs) are traditionally used for machine learning applications for temporal sequences such as natural language processing. Its application to image processing is relatively new. In this paper, we apply RNNs to denoise images corrupted by mixed Poisson and Gaussian noise. T...
Gespeichert in:
| Veröffentlicht in: | 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA) S. 484 - 489 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.12.2022
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recurrent neural networks (RNNs) are traditionally used for machine learning applications for temporal sequences such as natural language processing. Its application to image processing is relatively new. In this paper, we apply RNNs to denoise images corrupted by mixed Poisson and Gaussian noise. The motivation for using an RNN comes from viewing the denoising of the Poisson-Gaussian realization as a temporal process. The network then attempts to trace back the steps that create the noisy realization in order to arrive at the noiseless reconstruction. Numerical experiments demonstrate that our proposed RNN approach outperforms convolutional autoen-coder methods for denoising and upsampling low-resolution images from the CIFAR-10 dataset. |
|---|---|
| AbstractList | Recurrent neural networks (RNNs) are traditionally used for machine learning applications for temporal sequences such as natural language processing. Its application to image processing is relatively new. In this paper, we apply RNNs to denoise images corrupted by mixed Poisson and Gaussian noise. The motivation for using an RNN comes from viewing the denoising of the Poisson-Gaussian realization as a temporal process. The network then attempts to trace back the steps that create the noisy realization in order to arrive at the noiseless reconstruction. Numerical experiments demonstrate that our proposed RNN approach outperforms convolutional autoen-coder methods for denoising and upsampling low-resolution images from the CIFAR-10 dataset. |
| Author | Singhal, Mukesh Ranganath, Aditya DeGuchy, Omar Marcia, Roummel Santiago, Fabian |
| Author_xml | – sequence: 1 givenname: Aditya surname: Ranganath fullname: Ranganath, Aditya organization: University of California, Merced,School of Engineering,Merced,CA,USA,95343 – sequence: 2 givenname: Omar surname: DeGuchy fullname: DeGuchy, Omar organization: University of California, Merced,Applied Mathematics,Merced,CA,USA,95343 – sequence: 3 givenname: Fabian surname: Santiago fullname: Santiago, Fabian organization: University of California, Merced,Applied Mathematics,Merced,CA,USA,95343 – sequence: 4 givenname: Mukesh surname: Singhal fullname: Singhal, Mukesh organization: University of California, Merced,School of Engineering,Merced,CA,USA,95343 – sequence: 5 givenname: Roummel surname: Marcia fullname: Marcia, Roummel organization: University of California, Merced,Applied Mathematics,Merced,CA,USA,95343 |
| BookMark | eNotjlFLwzAUhSPog5v-A4X8gc6bmyZtfCt1zsGmIvoo45qmM9AlI13F_XuL-nQOHL6PM2GnIQbH2LWAmRBgbpb1elUppY2eISDOAKAoT9hEaK1yjaWU5-z9xdkhJRcO_NGlgTq-3NHWh-0trwKff8VuOPgYKB15td-nSPaTtzHxtf92DX-OfT-u2YKGsVD4hR2_cyH6fpRcsLOWut5d_ueUvd3PX-uHbPW0WNbVKvMI-SFrLFjQSARStlblQpFptPko0RbalMpJtEQFWoWylQXlDeY5KmUaMK7ERk7Z1Z_XO-c2--R34-GNANBGaJQ_VKBQ_g |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICMLA55696.2022.00078 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665462833 9781665462839 |
| EndPage | 489 |
| ExternalDocumentID | 10069162 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation funderid: 10.13039/100000001 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i204t-dc0c062aa033fc5415a9d69b82c76985e32caa72c523f37a4d2442559d09e82d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000980994900069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jan 18 11:14:48 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-dc0c062aa033fc5415a9d69b82c76985e32caa72c523f37a4d2442559d09e82d3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10069162 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Dec. |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec. |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA) |
| PublicationTitleAbbrev | ICMLA |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8368926 |
| Snippet | Recurrent neural networks (RNNs) are traditionally used for machine learning applications for temporal sequences such as natural language processing. Its... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 484 |
| SubjectTerms | autoencoders image denoising Imaging Knowledge engineering Machine learning Natural language processing Noise measurement Noise reduction Recurrent neural networks upsampling |
| Title | Recurrent Nerual Imaging: An Evolutionary Approach for Mixed Possion-Gaussian Image Denoising |
| URI | https://ieeexplore.ieee.org/document/10069162 |
| WOSCitedRecordID | wos000980994900069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60ePCkYsU3e_C6muaxD2-ltlqwpYhCL1ImuxMIaCJpUvTfu7uNj4sHb2FJWJg8vpnJfN9HyIVFGWNxTjIOccRi2dMs7WlgoJyYus1vIQFvNiGmUzmfq1lLVvdcGET0w2d46Q79v3xT6sa1yuwbHnCbztgv7qYQfE3Walk5vUBdjQeT-36ScOVGD0IvxOnc0365pnjQGO38c7td0v2h39HZN7DskQ0s9snzg-uMOy0lOsWqgRc6fvUOQ9e0X9Dhqn2EoPqg_VYnnNqElE7ydzR0Vrpp14LdQrN0tEl_MdIbLMrcdQu65Gk0fBzcsdYbgeVhENfM6EAHPAQIoijTiYVhUIarVIZacCUTjEINIEJtC80sEhAbi-OufDCBQhma6IB0irLAQ0LTNEtFJIXkKGKFSQr2_ESLOLPlDpd4RLouNou3tfzF4issx3-sn5BtF_71zMcp6dRVg2dkS6_qfFmd-5v2CUPomaM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA0yBX1SceK3efA1mqXNl29jbm64lSET9iIjTVIYaCvdOvTfm2T148UH30ppCSRpzr2395wDwJVDGeNwTiCm4gjFoqVR2tIKKenF1F18q6gKZhM8ScR0Ksc1WT1wYay1ofnMXvvL8C_fFLrypTL3hWPmwhl34m7SOCZ4TdeqeTktLG8GndGwTSmTvvmABClO75_2yzclwEZv958D7oHmDwEPjr-hZR9s2PwAPD_62rhXU4KJLSv1AgevwWPoFrZz2F3Vm0iVH7BdK4VDF5LC0fzdGjgufL9rju5VtfDEyfCyhXc2L-a-XtAET73upNNHtTsCmhMcL5HRWGNGlMJRlGnqgFhJw2QqiOZMCmojopXiRLtUM4u4io1Dcp9AGCytICY6BI28yO0RgGmapTwSXDDLY2lpqtzzVPM4cwkPE_YYNP3czN7WAhizr2k5-eP-JdjuT0bD2XCQPJyCHb8U6w6QM9BYlpU9B1t6tZwvyouwgJ9wU5zq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+21st+IEEE+International+Conference+on+Machine+Learning+and+Applications+%28ICMLA%29&rft.atitle=Recurrent+Nerual+Imaging%3A+An+Evolutionary+Approach+for+Mixed+Possion-Gaussian+Image+Denoising&rft.au=Ranganath%2C+Aditya&rft.au=DeGuchy%2C+Omar&rft.au=Santiago%2C+Fabian&rft.au=Singhal%2C+Mukesh&rft.date=2022-12-01&rft.pub=IEEE&rft.spage=484&rft.epage=489&rft_id=info:doi/10.1109%2FICMLA55696.2022.00078&rft.externalDocID=10069162 |