Efficient PRAM and Practical GPU Algorithms for Large Polygon Clipping with Degenerate Cases

Polygonal geometric operations are fundamental in domains such as Computer Graphics, Computer-Aided Design, and Geographic Information Systems. Handling degenerate cases in such operations is important when real-world spatial data are used. The popular Greiner-Hormann (GH) clipping algorithm does no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid) S. 579 - 591
Hauptverfasser: Ashan, M. K. Buddhi, Puri, Satish, Prasad, Sushil K.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.05.2023
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Polygonal geometric operations are fundamental in domains such as Computer Graphics, Computer-Aided Design, and Geographic Information Systems. Handling degenerate cases in such operations is important when real-world spatial data are used. The popular Greiner-Hormann (GH) clipping algorithm does not handle such cases properly without perturbing vertices leading to inaccuracies and ambiguities. In this work, we parallelize the O (n 2 )-time general polygon clipping algorithm by Foster et al., which can handle degenerate cases without perturbation. Our CREW PRAM algorithm can perform clipping in O (log n) time using n + k number of processors with simple polygons, where n is the number of input edges and k is the number of edge intersections. For efficient GPU implementation, we employ three effective filters which have not been used in prior work on polygon clipping: 1) Common-minimum-bounding-rectangle filter, 2) Count-based filter, and 3) Line-segment-minimum-bounding-rectangle filter. They drastically reduce O( n 2 ) candidate edge pairs comparisons by 80% - 99%, leading to significantly faster parallel execution. In our experiments, C++ CUDA-based implementation yields up to 40X speedup over real-world datasets, processing two polygons with a total of 174K vertices on an Nvidia Quadro RTX 5000 GPU compared to the sequential Foster's algorithm running on an Intel Xeon Silver 4210R CPU.
AbstractList Polygonal geometric operations are fundamental in domains such as Computer Graphics, Computer-Aided Design, and Geographic Information Systems. Handling degenerate cases in such operations is important when real-world spatial data are used. The popular Greiner-Hormann (GH) clipping algorithm does not handle such cases properly without perturbing vertices leading to inaccuracies and ambiguities. In this work, we parallelize the O (n 2 )-time general polygon clipping algorithm by Foster et al., which can handle degenerate cases without perturbation. Our CREW PRAM algorithm can perform clipping in O (log n) time using n + k number of processors with simple polygons, where n is the number of input edges and k is the number of edge intersections. For efficient GPU implementation, we employ three effective filters which have not been used in prior work on polygon clipping: 1) Common-minimum-bounding-rectangle filter, 2) Count-based filter, and 3) Line-segment-minimum-bounding-rectangle filter. They drastically reduce O( n 2 ) candidate edge pairs comparisons by 80% - 99%, leading to significantly faster parallel execution. In our experiments, C++ CUDA-based implementation yields up to 40X speedup over real-world datasets, processing two polygons with a total of 174K vertices on an Nvidia Quadro RTX 5000 GPU compared to the sequential Foster's algorithm running on an Intel Xeon Silver 4210R CPU.
Author Ashan, M. K. Buddhi
Puri, Satish
Prasad, Sushil K.
Author_xml – sequence: 1
  givenname: M. K. Buddhi
  surname: Ashan
  fullname: Ashan, M. K. Buddhi
  email: buddhiashan.mallikakankanamalage@utsa.edu
  organization: University of Texas at,Department of Computer Science,San Antonio
– sequence: 2
  givenname: Satish
  surname: Puri
  fullname: Puri, Satish
  email: satish.puri@marquette.edu
  organization: Marquette University,Department of Computer Science
– sequence: 3
  givenname: Sushil K.
  surname: Prasad
  fullname: Prasad, Sushil K.
  email: sushil.prasad@utsa.edu
  organization: University of Texas at,Department of Computer Science,San Antonio
BookMark eNotjNFKwzAUQCPog879gUh-YPXeJGuTx1JnJ1Qs4t6EceluaqBLR1qQ_b0DfTocOJw7cR3HyEI8ImSI4J6qqk7hsC5yqzIFSmcAkMOVWLrCWb0GDYjO3YqvjfehCxxn2X6Ub5LiQbaJujl0NMi63cly6McU5u_jJP2YZEOpZ9mOw7kfo6yGcDqF2MufSyGfuefIiWaWFU083YsbT8PEy38uxO5l81ltV817_VqVzSooMPPqAMp4q_KOFKJH5ZjQoPXKOdbkjDWeCw_GYgfeFoZIX8wBIbFXCvRCPPx9AzPvTykcKZ33CFjgOrf6F3IdUNo
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCGrid57682.2023.00060
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès Toulouse INP et ENVT - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350301199
EndPage 591
ExternalDocumentID 10171568
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i204t-d024f826ca211f129ea1418f299e3a9484fe7f0481c0f874aa3f0490a1aef2203
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001031746200050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jan 18 11:14:47 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-d024f826ca211f129ea1418f299e3a9484fe7f0481c0f874aa3f0490a1aef2203
PageCount 13
ParticipantIDs ieee_primary_10171568
PublicationCentury 2000
PublicationDate 2023-May
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-May
PublicationDecade 2020
PublicationTitle 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)
PublicationTitleAbbrev CCGRID
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.845336
Snippet Polygonal geometric operations are fundamental in domains such as Computer Graphics, Computer-Aided Design, and Geographic Information Systems. Handling...
SourceID ieee
SourceType Publisher
StartPage 579
SubjectTerms C++ languages
Clustering algorithms
degenerate intersections
Filtering algorithms
Foster et al. algorithm
GPU algorithm
Graphics processing units
Greiner-Hormann algorithm
Perturbation methods
Phase change random access memory
polygon clipping
PRAM algorithm
Silver
Title Efficient PRAM and Practical GPU Algorithms for Large Polygon Clipping with Degenerate Cases
URI https://ieeexplore.ieee.org/document/10171568
WOSCitedRecordID wos001031746200050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5uePCk4sTf5OC1rk3TNjmOus3DHEUc7CCMrHmpg9mOrRP8731J54-LB28hEAIvge99yfu-R8itCSMTq2iOlxeUx1WgPMzjmIdYK6IIINbSCYVHyXgsplOZ7cTqTgsDAK74DO7s0P3l6yrf2qeyrr0-yDdEi7SSJGnEWjvVb-DLbpoO1wttE2irsGLWutS31pO_2qY41Bgc_nO_I9L50d_R7BtZjskelCfkpe_cHnAFzZ56j1SVmjZuQxhmOswmtLcsKuT6r28biqkoHdkib5pVy4-iKmm6dFYMBbUvr_QeCuc3XQNNEcc2HTIZ9J_TB2_XG8FbMJ_XnkZsNUgNcoUMziBogwp4IAyiC4RKcsENJMaaweS-EQlXKjT2kw8PAwxjfnhK2mVVwhmhPoQy0JrFOkf6EksRR8EcmERMkwCKn5OODc1s1dhfzL6icvHH_CU5sNFvqgKvSLteb-Ga7Ofv9WKzvnGH9gmyD5kX
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA06BX1SceK3efC1rk3TrnkcdR9iN4pssAdhZM3NHMxWtk7w33uTzo8XH3wLgRC4N3DuSe45IeRW-4EOZTDFwwvS4dKTDtZxzEGsjYIAIFTCCoWT5mAQjcci3YjVrRYGAGzzGdyZoX3LV0W2NldlDXN8kG9E22Qn4Jx5lVxro_v1XNGI4-5yrkwJbTRWzJiXusZ88tfHKRY3Ogf_3PGQ1H8UeDT9xpYjsgX5MXluW78HXEHTp1afylzRym8IA0276Yi2FrMC2f7L64piMUoT0-ZN02LxMStyGi-sGcOMmrtXeg8z6zhdAo0RyVZ1Muq0h3HP2fyO4MyZy0tHIbpqJAeZRA6nEbZBetyLNOIL-FLwiGtoamMHk7k6anIpfW2e-TAdoBlz_RNSy4scTgl1wReeUixUGRKYUERh4E2BCUQ1ASD5Gamb0EzeKgOMyVdUzv-YvyF7vWE_mSQPg8cLsm8yUfUIXpJauVzDFdnN3sv5anltE_gJ2Q6cXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE%2FACM+23rd+International+Symposium+on+Cluster%2C+Cloud+and+Internet+Computing+%28CCGrid%29&rft.atitle=Efficient+PRAM+and+Practical+GPU+Algorithms+for+Large+Polygon+Clipping+with+Degenerate+Cases&rft.au=Ashan%2C+M.+K.+Buddhi&rft.au=Puri%2C+Satish&rft.au=Prasad%2C+Sushil+K.&rft.date=2023-05-01&rft.pub=IEEE&rft.spage=579&rft.epage=591&rft_id=info:doi/10.1109%2FCCGrid57682.2023.00060&rft.externalDocID=10171568