Manufacturing Big Data Modeling Algorithm Based on GM (1,1) - LSTM and Its Application in Sales Forecasting

It is a new period for the development of automobile industry, the economic situation is complex and changing, and the policies of automobile industry are frequently issued, so accurate prediction of automobile sales is extremely important and practical for both government and enterprises. In this p...

Full description

Saved in:
Bibliographic Details
Published in:Data Driven Control and Learning Systems Conference (Online) pp. 1171 - 1175
Main Authors: Long, Yinren, Xiao, Yi, Ren, Hongru, Lu, Renquan
Format: Conference Proceeding
Language:English
Published: IEEE 12.05.2023
Subjects:
ISSN:2767-9861
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract It is a new period for the development of automobile industry, the economic situation is complex and changing, and the policies of automobile industry are frequently issued, so accurate prediction of automobile sales is extremely important and practical for both government and enterprises. In this paper, the GM(1,1) model and the long short-term memory (LSTM) neural network model are combined and optimized, and the sales of a brand of cars from January 2019 to September 2022 are used as sample data, and the car sales in the next three months are predicted by two single models and linear combination forecasting models, respectively. The experimental results show that the linear combined forecasting model outperforms the other two single models in terms of forecasting results and has better resistance to the interference of external factors.
AbstractList It is a new period for the development of automobile industry, the economic situation is complex and changing, and the policies of automobile industry are frequently issued, so accurate prediction of automobile sales is extremely important and practical for both government and enterprises. In this paper, the GM(1,1) model and the long short-term memory (LSTM) neural network model are combined and optimized, and the sales of a brand of cars from January 2019 to September 2022 are used as sample data, and the car sales in the next three months are predicted by two single models and linear combination forecasting models, respectively. The experimental results show that the linear combined forecasting model outperforms the other two single models in terms of forecasting results and has better resistance to the interference of external factors.
Author Ren, Hongru
Lu, Renquan
Long, Yinren
Xiao, Yi
Author_xml – sequence: 1
  givenname: Yinren
  surname: Long
  fullname: Long, Yinren
  organization: Guangdong University of Technology,School of Automation and Guangdong Province Key Laboratory of Intelligent Decision and Cooperative Control,Guangzhou,China,510006
– sequence: 2
  givenname: Yi
  surname: Xiao
  fullname: Xiao, Yi
  organization: Guangdong University of Technology,School of Automation and Guangdong Province Key Laboratory of Intelligent Decision and Cooperative Control,Guangzhou,China,510006
– sequence: 3
  givenname: Hongru
  surname: Ren
  fullname: Ren, Hongru
  email: renhongru2019@gdut.edu.cn
  organization: Guangdong University of Technology,School of Automation and Guangdong Province Key Laboratory of Intelligent Decision and Cooperative Control,Guangzhou,China,510006
– sequence: 4
  givenname: Renquan
  surname: Lu
  fullname: Lu, Renquan
  organization: Guangdong University of Technology,School of Automation and Guangdong Province Key Laboratory of Intelligent Decision and Cooperative Control,Guangzhou,China,510006
BookMark eNo1kD1PwzAURQ0CiVL6DxjeCBIpz3bs2GM_aKmUiKFlrl4cpxjSpErSgX_fImC60r1HZ7i37Kpuas8YcBxzjvZ5Pp-la2UE12OBQo45cq3RxhdsZBNrpEIpOCq8ZAOR6CSyRvMbNuq6T0QUiktt5YB9ZVQfS3L9sQ31DqZhB3PqCbKm8NVPM6l2TRv6jz1MqfMFNDUsM3jgT_wRIkjXmwyoLmDVdzA5HKrgqA9nJtSwpsp3sGha76jrz647dl1S1fnRXw7Z--JlM3uN0rflajZJoyAw7iNXcitjkVCijY6LnFzOpU2ciL1R2rryvBlulPSopMhzJJlbZ7AsXayIcjlk97_e4L3fHtqwp_Z7-_-PPAFwG1oH
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DDCLS58216.2023.10166094
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350321050
EISSN 2767-9861
EndPage 1175
ExternalDocumentID 10166094
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFB1700400
  funderid: 10.13039/501100012166
– fundername: Key Area Research and Development Program of Guangdong Province
  grantid: 2021B0101410005
  funderid: 10.13039/501100015956
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2022A1515011506
  funderid: 10.13039/501100003453
– fundername: Guangzhou Science and Technology Planning Project
  grantid: 202102020586
  funderid: 10.13039/501100004000
– fundername: National Natural Science Foundation of China
  grantid: 62003093,62121004,62141606,U1911401
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i204t-cf193427a76864dbacb1397c24e8569cf42781853e0532bb0a3b9c80ffc45aab3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001047443700199&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:20:00 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-cf193427a76864dbacb1397c24e8569cf42781853e0532bb0a3b9c80ffc45aab3
PageCount 5
ParticipantIDs ieee_primary_10166094
PublicationCentury 2000
PublicationDate 2023-May-12
PublicationDateYYYYMMDD 2023-05-12
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-May-12
  day: 12
PublicationDecade 2020
PublicationTitle Data Driven Control and Learning Systems Conference (Online)
PublicationTitleAbbrev DDCLS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002513693
Score 1.8313228
Snippet It is a new period for the development of automobile industry, the economic situation is complex and changing, and the policies of automobile industry are...
SourceID ieee
SourceType Publisher
StartPage 1171
SubjectTerms Big Data
Big Data Modeling
Data models
Industries
Manufacturing Enterprise
Neural networks
Prediction algorithms
Predictive models
Resistance
Sales Forecasting
Title Manufacturing Big Data Modeling Algorithm Based on GM (1,1) - LSTM and Its Application in Sales Forecasting
URI https://ieeexplore.ieee.org/document/10166094
WOSCitedRecordID wos001047443700199&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA22uHClYsU3d-FCweljkmYmyz6sCm0ptEJ3Jclk6qDOSGfq95ubvnDhwl0SSAjJ4pybe08OIbeaCWOJReRJaZjHLMB4FseZZ5mpYE0Vh7FizmwiGA7D6VSM1mJ1p4UxxrjiM1PFpsvlR5le4lNZDSNNbuOREikFAV-JtbYPKhaoKRd0U61TF7Vut9MfoxAUSxF8Wt1M_2Wk4nCkd_jPHRyRyk6RB6Mt1hyTPZOekPeBTJeoTHBSQ2gnc-jKQgL6m6HKHFof88wG_2-f0LZgFUGWwtMA7hoPjXvwoD-eDECmEbwUObR2iWxIUhhb3MgBfTu1zLEyukJee4-TzrO3Nk_wEr_OCk_HlpoxP5A2nuAsUlIrJHvaZyZscqFj9NhAsHbeEErVJVVCh_U41qwppaKnpJxmqTkjwCOkGXbBkFNmDFWKcmn7dkCKkIlzUsGTmn2t_seYbQ7p4o_xS3KA94E5-IZ_RcrFYmmuyb7-LpJ8ceNu9QfzwaBe
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UTfSkRoy_fQcPmlgYWzfWIz9EiIOQgAk30nYdLupm2PDvt28IxIMHb20PL017-L7X975-hNwqxrUhFiEVQjPKDMBQg-OMGmbKmSsjP5KsMJuoDwb-ZMKHP2L1QgujtS6az3QFh0UtP0zVAp_KqphpeiYf2SY7LmO2tZRrrZ9UDFQ7HndW_ToWr7bbrWCEUlBsRrCdyirALyuVAkk6B__cwyEpbzR5MFyjzRHZ0skxeeuLZIHahEJsCM14Bm2RC0CHM9SZQ-N9lpr0__UDmgauQkgTeOrDXe2hdg8UgtG4DyIJoZdn0NiUsiFOYGSQIwN07lQiw97oMnnpPI5bXfpjn0Bj22I5VZEhZ8yuC5NReCyUQkmke8pm2nc9riJ02UC4LtwhpLSEI7nyrShSzBVCOieklKSJPiXghUg0TEDfc5jWjpSOJ8zcLAjuM35GynhS08_lDxnT1SGd_7F-Q_a6434wDXqD5wuyj3eDFfmafUlK-Xyhr8iu-srjbH5d3PA3fUCjpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Data+Driven+Control+and+Learning+Systems+Conference+%28Online%29&rft.atitle=Manufacturing+Big+Data+Modeling+Algorithm+Based+on+GM+%281%2C1%29+-+LSTM+and+Its+Application+in+Sales+Forecasting&rft.au=Long%2C+Yinren&rft.au=Xiao%2C+Yi&rft.au=Ren%2C+Hongru&rft.au=Lu%2C+Renquan&rft.date=2023-05-12&rft.pub=IEEE&rft.eissn=2767-9861&rft.spage=1171&rft.epage=1175&rft_id=info:doi/10.1109%2FDDCLS58216.2023.10166094&rft.externalDocID=10166094