Efficient Distributed Algorithms for Minimum Spanning Tree in Dense Graphs

In recent years, the Massively Parallel Computation (MPC) model capturing the MapReduce framework has become the de facto standard model for large-scale data analysis, given the ubiquity of efficient and affordable cloud implementations. In this model, an input of size m is initially distributed amo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE ... International Conference on Data Mining workshops pp. 777 - 786
Main Authors: Bateni, MohammadHossein, Monemzadeh, Morteza, Voorintholt, Kees
Format: Conference Proceeding
Language:English
Published: IEEE 01.11.2022
Subjects:
ISSN:2375-9259
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In recent years, the Massively Parallel Computation (MPC) model capturing the MapReduce framework has become the de facto standard model for large-scale data analysis, given the ubiquity of efficient and affordable cloud implementations. In this model, an input of size m is initially distributed among t machines, each with a local space of size s . Computation proceeds in synchronous rounds in which each machine performs arbitrary local computation on its data and then sends messages to other machines. In this paper, we study the Minimum Spanning Tree (MST) problem for dense graphs in the MPC model. We say a graph G(V,\ E) is relatively dense if m=\Theta(n^{1+c}) where n=\vert V\vert is the number of vertices, m=\vert E\vert is the number of edges in this graph, and 0 < c\leq 1 . We develop the first work- and space-efficient MPC algorithm that with high probability computes an MST of G using \lceil\log\frac{c}{\epsilon}\rceil+1 rounds of communication. As an MPC algorithm, our algorithm uses t=O(n^{c-\epsilon}) machines each one having local storage of size s=O(n^{1+\epsilon}) for any 0 < \epsilon\leq c . Indeed, not only is this algorithm very simple and easy to implement, it also simultaneously achieves optimal total work, per-machine space, and number of rounds.
AbstractList In recent years, the Massively Parallel Computation (MPC) model capturing the MapReduce framework has become the de facto standard model for large-scale data analysis, given the ubiquity of efficient and affordable cloud implementations. In this model, an input of size m is initially distributed among t machines, each with a local space of size s . Computation proceeds in synchronous rounds in which each machine performs arbitrary local computation on its data and then sends messages to other machines. In this paper, we study the Minimum Spanning Tree (MST) problem for dense graphs in the MPC model. We say a graph G(V,\ E) is relatively dense if m=\Theta(n^{1+c}) where n=\vert V\vert is the number of vertices, m=\vert E\vert is the number of edges in this graph, and 0 < c\leq 1 . We develop the first work- and space-efficient MPC algorithm that with high probability computes an MST of G using \lceil\log\frac{c}{\epsilon}\rceil+1 rounds of communication. As an MPC algorithm, our algorithm uses t=O(n^{c-\epsilon}) machines each one having local storage of size s=O(n^{1+\epsilon}) for any 0 < \epsilon\leq c . Indeed, not only is this algorithm very simple and easy to implement, it also simultaneously achieves optimal total work, per-machine space, and number of rounds.
Author Voorintholt, Kees
Monemzadeh, Morteza
Bateni, MohammadHossein
Author_xml – sequence: 1
  givenname: MohammadHossein
  surname: Bateni
  fullname: Bateni, MohammadHossein
  email: bateni@google.com
  organization: Google Research, NYC,New York,USA
– sequence: 2
  givenname: Morteza
  surname: Monemzadeh
  fullname: Monemzadeh, Morteza
  email: m.monemizadeh@tue.nl
  organization: TU Eindhoven,Eindhoven,The Netherlands
– sequence: 3
  givenname: Kees
  surname: Voorintholt
  fullname: Voorintholt, Kees
  email: kees.voorintholt@live.nl
  organization: NAVARA,Eindhoven,The Netherlands
BookMark eNotjNFOwjAUQKvRRET-QJP-wObtbbutjwQQMRAfxPhItvUWalhZ2vHg30uiOQ_n5eTcs5twCsTYk4BcCDDPq9l886UrwCJHQMwBBBRXbGJKU0kNUhVgxDUboSx1ZlCbOzZJ6RsunZHKGByxt4VzvvUUBj73aYi-OQ9k-fS4P0U_HLrE3SnyjQ--O3f8o69D8GHPt5GI-8DnFBLxZaz7Q3pgt64-Jpr8e8w-Xxbb2Wu2fl-uZtN15hHUkLVghdGuUlZUEkpLtpZNQ0IrLAGtq7FobImtsRYaBQ1UmuACVs4WqIwcs8e_ryeiXR99V8efnQCQQohS_gI6nlCP
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICDMW58026.2022.00106
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350346091
EISSN 2375-9259
EndPage 786
ExternalDocumentID 10031117
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i204t-c0d195f84d18307deda3bbe1542702dfa26bd72c9dd0b40b085e0e0e28fd62493
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000971492200097&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:48:45 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-c0d195f84d18307deda3bbe1542702dfa26bd72c9dd0b40b085e0e0e28fd62493
PageCount 10
ParticipantIDs ieee_primary_10031117
PublicationCentury 2000
PublicationDate 2022-Nov.
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-Nov.
PublicationDecade 2020
PublicationTitle IEEE ... International Conference on Data Mining workshops
PublicationTitleAbbrev ICDMW
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001934992
Score 1.8117807
Snippet In recent years, the Massively Parallel Computation (MPC) model capturing the MapReduce framework has become the de facto standard model for large-scale data...
SourceID ieee
SourceType Publisher
StartPage 777
SubjectTerms affinity clustering
Analytical models
Clustering algorithms
Computational efficiency
Computational modeling
Conferences
Data analysis
Data models
distributed setting
minimum spanning tree
number of rounds
work and space efficient algorithm
Title Efficient Distributed Algorithms for Minimum Spanning Tree in Dense Graphs
URI https://ieeexplore.ieee.org/document/10031117
WOSCitedRecordID wos000971492200097&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVoxYETWxG7fOAacBIndo6oC4vUqhJF9FZ5hUg0rdKU72fspJQLB5RLlEMizXg08-y89xC6odA0hDtkTSyXAdUiDYRlaQBgRDLJ4ziU1ptNsNGIT6fZuCGrey6MMcb_fGZu3a0_y9cLtXZbZVDhsATDkLVQi7G0JmttN1SyGKb3qGHphCS7e-r2hm8JB5QBODBywpyhMzb65aLim8hg_5-fP0CdLR0Pj38azSHaMcUR2t_4MeCmPI_Rc9_rQcBLcM_p4TorK6Px_ef7osyrj_kKw4SKh3mRz9dz_LKs7YrwpDQG5wXuAaI1-MEpWK866HXQn3Qfg8YrIcgjQqtAER1mEG-qoUYJ00aLWEoDA5IjnGkrolRqFqlMayIpkTBpGQJXxK1OAYLFJ6hdLApzirCyAOGYosImmkImRaw4gVRrm_JEifQMdVxsZstaDmO2Ccv5H88v0J4Lf03gu0TtqlybK7Srvqp8VV77JH4Dd32d0g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN5oNdFTfdT4dg9e0QUWFo6mD1ttmybW2FuzTyWxtKHU3-8sUOvFg-FCOBAys5OZb5fv-xC6pdA0uD1kDUwkHKp46HDDQgfAiGAi8n1XmMJsgg2H0WQSjyqyesGF0VoXP5_pO3tbnOWruVzZrTKocFiCrsu20U5AqUdKutZmSyX2YX73Kp6OS-L7XrM1eAsiwBmABD0rzelaa6NfPipFG-nU__kBB6ixIeTh0U-rOURbOj1C9bUjA64K9Bg9tQtFCHgJbllFXGtmpRV--HyfZ0n-MVtimFHxIEmT2WqGXxalYREeZ1rjJMUtwLQaP1oN62UDvXba42bXqdwSnMQjNHckUW4MEacKqpQwpRX3hdAwIlnKmTLcC4VinoyVIoISAbOWJnB5kVEhgDD_BNXSeapPEZYGQByTlJtAUcgl92VEINnKhFEgeXiGGjY200UpiDFdh-X8j-c3aK87HvSn_d7w-QLt21SUdL5LVMuzlb5Cu_IrT5bZdZHQb9yeoRk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+...+International+Conference+on+Data+Mining+workshops&rft.atitle=Efficient+Distributed+Algorithms+for+Minimum+Spanning+Tree+in+Dense+Graphs&rft.au=Bateni%2C+MohammadHossein&rft.au=Monemzadeh%2C+Morteza&rft.au=Voorintholt%2C+Kees&rft.date=2022-11-01&rft.pub=IEEE&rft.eissn=2375-9259&rft.spage=777&rft.epage=786&rft_id=info:doi/10.1109%2FICDMW58026.2022.00106&rft.externalDocID=10031117