Classification of Activities of Daily Living in Subjects with Parkinson's Disease using Artificial Neural Networks

Parkinson's disease (PD) is a progressive disease characterized by slow movements, tremors, and postural instability [1]. Inertial sensors provide valuable information to assess the quality of movement in patients with PD [2]. The present work proposes improving the follow-up and support system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pan American Health Care Exchanges (Online) S. 1 - 5
Hauptverfasser: Montero, L. R., Bastian, J. A., SanPablo, A. I. P.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 27.03.2023
Schlagworte:
ISSN:2327-817X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Parkinson's disease (PD) is a progressive disease characterized by slow movements, tremors, and postural instability [1]. Inertial sensors provide valuable information to assess the quality of movement in patients with PD [2]. The present work proposes improving the follow-up and support systems issued by specialists in patients with PD by identifying and adequately classifying the activities of daily living (ADL) carried out by these patients by applying programmed artificial neuronal networks (ANN) in Python language. The proposed supervised learning method allowed the classification of 6 ADLs through 64 signals from inertial sensors that made up the database (dataset) to train a multilayer perceptron (MLP), achieving an accuracy of 99%. Also, by applying dimensionality reduction to dataset, it was possible to reach 80% of accuracy in the classification. These results can potentially help the specialist to reduce costs and achieve a more accurate evaluation, seeking to improve monitoring and quality in the rehabilitation of these patients.
AbstractList Parkinson's disease (PD) is a progressive disease characterized by slow movements, tremors, and postural instability [1]. Inertial sensors provide valuable information to assess the quality of movement in patients with PD [2]. The present work proposes improving the follow-up and support systems issued by specialists in patients with PD by identifying and adequately classifying the activities of daily living (ADL) carried out by these patients by applying programmed artificial neuronal networks (ANN) in Python language. The proposed supervised learning method allowed the classification of 6 ADLs through 64 signals from inertial sensors that made up the database (dataset) to train a multilayer perceptron (MLP), achieving an accuracy of 99%. Also, by applying dimensionality reduction to dataset, it was possible to reach 80% of accuracy in the classification. These results can potentially help the specialist to reduce costs and achieve a more accurate evaluation, seeking to improve monitoring and quality in the rehabilitation of these patients.
Author SanPablo, A. I. P.
Bastian, J. A.
Montero, L. R.
Author_xml – sequence: 1
  givenname: L. R.
  surname: Montero
  fullname: Montero, L. R.
  email: lizethrodriguez@lasallistas.org.mx
  organization: Universidad La Salle,Mexico City,Mexico
– sequence: 2
  givenname: J. A.
  surname: Bastian
  fullname: Bastian, J. A.
  organization: Groups of Applied Intelligent Systems and Collaborative Assistance Robotics
– sequence: 3
  givenname: A. I. P.
  surname: SanPablo
  fullname: SanPablo, A. I. P.
  organization: Universidad La Salle,Mexico City,Mexico
BookMark eNo1kM9PwjAcxavRRET-Aw896Wnwbbt17XEZE0xQSdTEG-lGq1-Ym1kLhP9e8Mfp5b289zm8S3LWtI0l5IbBkDHQo8lDMS9G82yaF4lKEj3kwMWQAecyTvUJGehUK5GAgBhAnZIeFzyNFEvfLsjA-xUACM5YKmWPdHltvEeHlQnYNrR1NKsCbjGg9Uc3Nljv6eyQNO8UG_q8KVe2Cp7uMHzQuenW2Pi2ufV0jN4ab-nGH6tZF45UNDV9tJvuR8Ku7db-ipw7U3s7-NM-eb0rXvJpNHua3OfZLEIOcYhKB0Zw7kohGEuc5WWlhEwSG5t0mZaVlqXVZSUVtyCkBO6UXrqYKSYqow_bPrn-5aK1dvHV4afp9ov_m8Q3Mhhh2g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/GMEPE/PAHCE58559.2023.10226479
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISBN 9798350304008
EISSN 2327-817X
EndPage 5
ExternalDocumentID 10226479
Genre orig-research
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i204t-bf0a322fb33115fe2bc83655e4a7d7bc96be9bc682e036602f89df41813ca90a3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001063190200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:55:20 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-bf0a322fb33115fe2bc83655e4a7d7bc96be9bc682e036602f89df41813ca90a3
PageCount 5
ParticipantIDs ieee_primary_10226479
PublicationCentury 2000
PublicationDate 2023-March-27
PublicationDateYYYYMMDD 2023-03-27
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-March-27
  day: 27
PublicationDecade 2020
PublicationTitle Pan American Health Care Exchanges (Online)
PublicationTitleAbbrev GMEPE/PAHCE
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211766
Score 1.8269919
Snippet Parkinson's disease (PD) is a progressive disease characterized by slow movements, tremors, and postural instability [1]. Inertial sensors provide valuable...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial neural networks
Artificial Neuronal Networks
Deep learning
Inertial sensors
Monitoring
Parkinson's disease
Sensor systems
Supervised learning
Title Classification of Activities of Daily Living in Subjects with Parkinson's Disease using Artificial Neural Networks
URI https://ieeexplore.ieee.org/document/10226479
WOSCitedRecordID wos001063190200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8MwDDZrGWWnvTr2xoexndJ2jhvbx9Km62EtOWzQW4kdewRGOpp2sH8_yUk7dthhpzwgIchWpE_SJxFyl4FJ0bBXQMW1CzjjOtBSPQaRMAJQc8aVrIZNiNlMzucqqcnqngtjrfXFZ7aDpz6Xny3NBkNlXUQnEReqQRpCiIqstQuohABlRBS1yH3dR7P7NI2TuJsMJsMYnOI-0lJY2Nm-5Nc4FW9Nxof__I4j0v7h5dFkZ3GOyZ4tTkhrWqfHT8nKj7jE4h8vb7p0dGD8eAjAw3g1SvP3L_qcYxSB5gWF3wbGYUqK4ViKDGhPBnso6ahK3FCsi3-jg5UvKYK9SrGbhz_48vGyTV7H8ctwEtRDFYKc9fg60K6XghI7HWKfHWeZNjKM-n3LU5EJbVSkrdImksyCcYt6zEmVOQ6OQGhSBc-ekWaxLOw5oQDfpHAOEBazXDkumbGOg9pZBY5iyi9IG2W3-Kj6Ziy2Yrv84_4VOcAVwgovJq5Jc73a2Buybz7Xebm69av9DXLhqmU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5goMGJ1xBvckBwKtvStEmO09YxxDbtMKTdpiZNUCXUoXZD4t_jpN0QBw6c-pBaVU5c-7P92QjdJWBSJOwVUHFpPEqo9CQXbS9kigFqTqjg5bAJNh7z2UxMKrK648JorV3xmX60py6XnyzUyobKmhadhJSJbbQTUEraJV1rE1LxAcywMKyj-6qTZvNpFE2i5qQz6EbgFgeWmEL8x_Vrfg1Ucfakf_DPLzlEjR9mHp5sbM4R2tLZMaqPqgT5CcrdkEtb_uMkjhcGd5QbEAGI2F714vT9Cw9TG0fAaYbhx2EjMQW2AVlsOdCODvZQ4F6ZusG2Mv4Nd3JXVAS7Fdt-Hu7gCsiLBnrtR9PuwKvGKngpadGlJ00rBjU20reddowmUnE_DAJNY5YwqUQotZAq5ESDeQtbxHCRGAqugK9iAc-eolq2yPQZwgDgODMGMBbRVBjKidKGguJpAa5iTM9Rw8pu_lF2zpivxXbxx_1btDeYjobz4fP45RLt29Wy9V6EXaHaMl_pa7SrPpdpkd-4lf8GfGitrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Pan+American+Health+Care+Exchanges+%28Online%29&rft.atitle=Classification+of+Activities+of+Daily+Living+in+Subjects+with+Parkinson%27s+Disease+using+Artificial+Neural+Networks&rft.au=Montero%2C+L.+R.&rft.au=Bastian%2C+J.+A.&rft.au=SanPablo%2C+A.+I.+P.&rft.date=2023-03-27&rft.pub=IEEE&rft.eissn=2327-817X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FGMEPE%2FPAHCE58559.2023.10226479&rft.externalDocID=10226479