GLIGEN: Open-Set Grounded Text-to-Image Generation
Large-scale text-to-image diffusion models have made amazing advances. However, the status quo is to use text input alone, which can impede controllability. In this work, we propose GLIGEN, Grounded-Language-to-Image Generation, a novel approach that builds upon and extends the functionality of exis...
Gespeichert in:
| Veröffentlicht in: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) S. 22511 - 22521 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.06.2023
|
| Schlagworte: | |
| ISSN: | 1063-6919 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Large-scale text-to-image diffusion models have made amazing advances. However, the status quo is to use text input alone, which can impede controllability. In this work, we propose GLIGEN, Grounded-Language-to-Image Generation, a novel approach that builds upon and extends the functionality of existing pre-trained text-to-image diffusion models by enabling them to also be conditioned on grounding inputs. To preserve the vast concept knowledge of the pre-trained model, we freeze all of its weights and inject the grounding information into new trainable layers via a gated mechanism. Our model achieves open-world grounded text2img generation with caption and bounding box condition inputs, and the grounding ability generalizes well to novel spatial configurations and concepts. GLIGEN's zero-shot performance on COCO and LVIS outperforms existing supervised layout-to-image baselines by a large margin. |
|---|---|
| AbstractList | Large-scale text-to-image diffusion models have made amazing advances. However, the status quo is to use text input alone, which can impede controllability. In this work, we propose GLIGEN, Grounded-Language-to-Image Generation, a novel approach that builds upon and extends the functionality of existing pre-trained text-to-image diffusion models by enabling them to also be conditioned on grounding inputs. To preserve the vast concept knowledge of the pre-trained model, we freeze all of its weights and inject the grounding information into new trainable layers via a gated mechanism. Our model achieves open-world grounded text2img generation with caption and bounding box condition inputs, and the grounding ability generalizes well to novel spatial configurations and concepts. GLIGEN's zero-shot performance on COCO and LVIS outperforms existing supervised layout-to-image baselines by a large margin. |
| Author | Liu, Haotian Yang, Jianwei Li, Chunyuan Li, Yuheng Gao, Jianfeng Wu, Qingyang Lee, Yong Jae Mu, Fangzhou |
| Author_xml | – sequence: 1 givenname: Yuheng surname: Li fullname: Li, Yuheng organization: University of Wisconsin-Madison – sequence: 2 givenname: Haotian surname: Liu fullname: Liu, Haotian organization: University of Wisconsin-Madison – sequence: 3 givenname: Qingyang surname: Wu fullname: Wu, Qingyang organization: Columbia University – sequence: 4 givenname: Fangzhou surname: Mu fullname: Mu, Fangzhou organization: University of Wisconsin-Madison – sequence: 5 givenname: Jianwei surname: Yang fullname: Yang, Jianwei organization: Microsoft – sequence: 6 givenname: Jianfeng surname: Gao fullname: Gao, Jianfeng organization: Microsoft – sequence: 7 givenname: Chunyuan surname: Li fullname: Li, Chunyuan organization: Microsoft – sequence: 8 givenname: Yong Jae surname: Lee fullname: Lee, Yong Jae organization: University of Wisconsin-Madison |
| BookMark | eNotzs1Kw0AUQOFRFKy1b9BFXmDq_ZmZ5LqTUmOhWNHqtkySG4nYpCQR9O0VdHV2H-fSnLVdq8bMERaIINfL18cnTynJgoB4AYQ-nJiZpJKxBwYkyU7NBCGwDYJyYWbD8A4ATIhBsomhfLPOVw83yfaorX3WMcn77rOttEp2-jXasbPrQ3zTJNdW-zg2XXtlzuv4Mejsv1PzcrfaLe_tZpuvl7cb2xC40RZlGYvCp9XvCnLlxKc1lS5m7ILUFCryPkIpGCKX4Gqo1bFqHVDSlJzy1Mz_3EZV98e-OcT-e49AwF6YfwClF0X7 |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR52729.2023.02156 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9798350301298 |
| EISSN | 1063-6919 |
| EndPage | 22521 |
| ExternalDocumentID | 10203593 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NASA grantid: 80NSSC21K0295 funderid: 10.13039/100000104 – fundername: Institute of Information & communications Technology Planning & Evaluation(IITP) grantid: 2022- 0–00871 funderid: 10.13039/501100010418 – fundername: NSF CAREER grantid: IIS2150012 funderid: 10.13039/100000001 |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i204t-bccabb57d83513d4957f2c4a83469f26d255a0c916a3c04f0fe43eef6197724e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 280 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001062531306081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:56:31 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-bccabb57d83513d4957f2c4a83469f26d255a0c916a3c04f0fe43eef6197724e3 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_10203593 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-June |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-June |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.7098608 |
| Snippet | Large-scale text-to-image diffusion models have made amazing advances. However, the status quo is to use text input alone, which can impede controllability. In... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 22511 |
| SubjectTerms | Computational modeling Computer vision Graphics Grounding Image and video synthesis and generation Image edge detection Logic gates Training data |
| Title | GLIGEN: Open-Set Grounded Text-to-Image Generation |
| URI | https://ieeexplore.ieee.org/document/10203593 |
| WOSCitedRecordID | wos001062531306081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb8IwDLYG2mEn9mDaWznsGlaa9LUrGgwJIbQxxA01iSNxGExQ9vtntx3TDjvsVkWqqjpy_H2OPxvgHrn7I49vJyieS22NIZ_LnYyMR4wx877Ucc9GyXiczufZpBarl1oYRCyLz7DDj-VdvlvbHafKyMND7jinGtBIkqQSa-0TKoqoTJyltTyuG2QPvdnkJQoJPXZ4RniHo1v8a4hKGUP6rX9-_RjaP2o8MdnHmRM4wNUptGr4KGrn3J5BOBgNB0_jR8FFIvIVC8GJJc5wiynz22Ith-90fIiq1TTvSBve-k_T3rOsRyLIZRjoQhoyuDFR4gg4dZUjdpP40Oo8VURzfRg7Ygh5YAnz5coG2gcetUL0RJMIRmtU59BcrVd4ASLil63n_jeZTrMg9c5Q9M8x8k4lxlxCm22w-Ki6Xiy-f__qj_VrOGIzV2VUN9AsNju8hUP7WSy3m7tyr74AEkWTEQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgIMFpPIZ40wPXjq5JX1ynvUSpJhjTblOTOtIOrGjr-P3YbRniwIFbFamq6sjx9zn-bIB75O6PPL6doHhqS60U-Vya2Z4yiD5GxpQ67mkcJEk4m0XjWqxeamEQsSw-wzY_lnf5Wa43nCojD3e545zYhT1PSrdTybW2KRVBZMaPwlog13Gih-50_OK5hB_bPCW8zfHN_zVGpYwi_eY_v38ErR89njXeRppj2MHlCTRrAGnV7rk-BXcQjwa95NHiMhH7FQuLU0uc47YmzHCL3B690wFiVc2meU9a8NbvTbpDux6KYC9cRxa2IpMr5QUZQaeOyIjfBMbVMg0FEV3j-hlxhNTRhPpSoR1pHINSIBoiSgSkJYozaCzzJZ6D5fHL2nAHnEiGkROaTFH8T9EzmQiUuoAW22D-UfW9mH___uUf63dwMJw8x_N4lDxdwSGbvCqquoZGsdrgDezrz2KxXt2W-_YF7lyWWA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=GLIGEN%3A+Open-Set+Grounded+Text-to-Image+Generation&rft.au=Li%2C+Yuheng&rft.au=Liu%2C+Haotian&rft.au=Wu%2C+Qingyang&rft.au=Mu%2C+Fangzhou&rft.date=2023-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=22511&rft.epage=22521&rft_id=info:doi/10.1109%2FCVPR52729.2023.02156&rft.externalDocID=10203593 |