HOICLIP: Efficient Knowledge Transfer for HOI Detection with Vision-Language Models
Human-Object Interaction (HOI) detection aims to localize human-object pairs and recognize their interactions. Recently, Contrastive Language-Image Pre-training (CLIP) has shown great potential in providing interaction prior for HOI detectors via knowledge distillation. However, such approaches ofte...
Uložené v:
| Vydané v: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 23507 - 23517 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.06.2023
|
| Predmet: | |
| ISSN: | 1063-6919 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Human-Object Interaction (HOI) detection aims to localize human-object pairs and recognize their interactions. Recently, Contrastive Language-Image Pre-training (CLIP) has shown great potential in providing interaction prior for HOI detectors via knowledge distillation. However, such approaches often rely on large-scale training data and suffer from inferior performance under few/zero-shot scenarios. In this paper, we propose a novel HOI detection framework that efficiently extracts prior knowledge from CLIP and achieves better generalization. In detail, we first introduce a novel interaction decoder to extract informative regions in the visual feature map of CLIP via a cross-attention mechanism, which is then fused with the detection backbone by a knowledge integration block for more accurate human- object pair detection. In addition, prior knowledge in CLIP text encoder is leveraged to generate a classifier by embedding HOI descriptions. To distinguish fine-grained interactions, we build a verb classifier from training data via visual semantic arithmetic and a lightweight verb representation adapter. Furthermore, we propose a training-free enhancement to exploit global HOI predictions from CLIP. Extensive experiments demonstrate that our method outperforms the state of the art by a large margin on various settings, e.g. +4.04 mAP on HICO-Det. The source code is available in https://github.com/Artanic30/HOICLIP. |
|---|---|
| ISSN: | 1063-6919 |
| DOI: | 10.1109/CVPR52729.2023.02251 |