Instant Volumetric Head Avatars

We present Instant Volumetric Head Avatars (INSTA), a novel approach for reconstructing photo-realistic digital avatars instantaneously. INSTA models a dynamic neural radiance field based on neural graphics primitives embedded around a parametric face model. Our pipeline is trained on a single monoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) S. 4574 - 4584
Hauptverfasser: Zielonka, Wojciech, Bolkart, Timo, Thies, Justus
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2023
Schlagworte:
ISSN:1063-6919
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present Instant Volumetric Head Avatars (INSTA), a novel approach for reconstructing photo-realistic digital avatars instantaneously. INSTA models a dynamic neural radiance field based on neural graphics primitives embedded around a parametric face model. Our pipeline is trained on a single monocular RGB portrait video that observes the subject under different expressions and views. While state-of-the-art methods take up to several days to train an avatar, our method can reconstruct a digital avatar in less than 10 minutes on modern GPU hardware, which is orders of magnitude faster than previous solutions. In addition, it allows for the interactive rendering of novel poses and expressions. By leveraging the geometry prior of the underlying parametric face model, we demonstrate that INSTA extrapolates to unseen poses. In quantitative and qualitative studies on various subjects, INSTA outperforms state-of-the-art methods regarding rendering quality and training time. Project website: https://zielon.github.io/insta/
AbstractList We present Instant Volumetric Head Avatars (INSTA), a novel approach for reconstructing photo-realistic digital avatars instantaneously. INSTA models a dynamic neural radiance field based on neural graphics primitives embedded around a parametric face model. Our pipeline is trained on a single monocular RGB portrait video that observes the subject under different expressions and views. While state-of-the-art methods take up to several days to train an avatar, our method can reconstruct a digital avatar in less than 10 minutes on modern GPU hardware, which is orders of magnitude faster than previous solutions. In addition, it allows for the interactive rendering of novel poses and expressions. By leveraging the geometry prior of the underlying parametric face model, we demonstrate that INSTA extrapolates to unseen poses. In quantitative and qualitative studies on various subjects, INSTA outperforms state-of-the-art methods regarding rendering quality and training time. Project website: https://zielon.github.io/insta/
Author Bolkart, Timo
Zielonka, Wojciech
Thies, Justus
Author_xml – sequence: 1
  givenname: Wojciech
  surname: Zielonka
  fullname: Zielonka, Wojciech
  email: wojciech.zielonka@tuebingen.mpg.de
  organization: Max Planck Institute for Intelligent Systems,Tübingen,Germany
– sequence: 2
  givenname: Timo
  surname: Bolkart
  fullname: Bolkart, Timo
  email: timo.bolkart@tuebingen.mpg.de
  organization: Max Planck Institute for Intelligent Systems,Tübingen,Germany
– sequence: 3
  givenname: Justus
  surname: Thies
  fullname: Thies, Justus
  email: justus.thies@tuebingen.mpg.de
  organization: Max Planck Institute for Intelligent Systems,Tübingen,Germany
BookMark eNotzdFKwzAUgOEoCs7ZNxjYF2g9JydNTi5HUTcYKKK7HadpBpWtkyYKvr2CXv1333-tLsbTGJVaINSI4O_a7fNLo532tQZNNYAx5kwV3nmmBghQez5XMwRLlfXor1SR0jsAkEa0nmfqdj2mLGMut6fD5zHmaQjlKkpfLr8ky5Ru1OVeDikW_52rt4f713ZVbZ4e1-1yUw0aTK46_l2CEeLg2fTRBTRihUNEuw-kSYDRCpATZuN0tD1wIO6h65pgDM3V4s8dYoy7j2k4yvS9Q9BAiA39AFg9P8U
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52729.2023.00444
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798350301298
EISSN 1063-6919
EndPage 4584
ExternalDocumentID 10203115
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i204t-b879804a38c984de7c14a6a8ce16fc323a0816a037a88472e6d08c38d0bb5c443
IEDL.DBID RIE
ISICitedReferencesCount 89
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001058542604087&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:56:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-b879804a38c984de7c14a6a8ce16fc323a0816a037a88472e6d08c38d0bb5c443
PageCount 11
ParticipantIDs ieee_primary_10203115
PublicationCentury 2000
PublicationDate 2023-June
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.529491
Snippet We present Instant Volumetric Head Avatars (INSTA), a novel approach for reconstructing photo-realistic digital avatars instantaneously. INSTA models a dynamic...
SourceID ieee
SourceType Publisher
StartPage 4574
SubjectTerms 3D from multi-view and sensors
Avatars
Face recognition
Geometry
Pipelines
Telepresence
Three-dimensional displays
Training
Title Instant Volumetric Head Avatars
URI https://ieeexplore.ieee.org/document/10203115
WOSCitedRecordID wos001058542604087&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwED4V1KETfVD13QxdQ43t2M5YoSK6IFS1iA1dLrbEAhUEfj-2k1J16NDN8mLZJ9_L_r4P4Im0IhIZpt4tslQ6nXk_iFnKyTk0qgyk31FsQo_HZjbLJw1YPWJhrLXx85nthWF8yy9XtA2tMn_DOQvsMC1oaa1qsNahoSJ8KaNy08Dj-ix_Hkwn7xn32WMvaIT3IjXaLxGVGEOGnX-ufgrdHzReMjnEmTM4sstz6DTpY9Jczs0FPL7FVK9KptHjBOr9ZORNmLzssPL1axc-h68fg1Ha6B-kC85klRZG54ZJFIZyI0urqS9RoSHbV44EFxhUM5AJjcYHGW5VyQwJU7KiyEhKcQnt5WppryDxs84K4mRdIZ0rDc9RaObQFyxcWLyGbtjw_KumuJh_7_Xmj_lbOAlnWv-ZuoN2td7aezimXbXYrB-iYfa8Qo0I
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4omugJHxjf7MHrYmm72-7RGAlEJMQg4UZmZ9uECxhY-P22ZcV48OCt6aVpJ51X-30fwAOplEgkGDu3yGJpVeL8ICYxJ2tRp4Un_Q5iE2ow0JNJNqzA6gELY4wJn89Myw_DW36xoLVvlbkbzplnh9mHg0RKzrZwrV1LRbhiJs10BZBrs-zxeTx8T7jLH1teJbwVyNF-yaiEKNKp_3P9E2j84PGi4S7SnMKemZ9BvUogo-p6rs6h2QvJXhmNg8_x5PtR1xkxetpg6SrYBnx0XkbP3bhSQIhnnMkyzrXKNJMoNGVaFkZRW2KKmkw7tSS4QK-bgUwo1C7McJMWTJPQBcvzhKQUF1CbL-bmEiI3a40gTsbm0tpC8wyFYhZdycKFwSto-A1PP7ckF9PvvV7_Md-Eo-7orT_t9wavN3Dsz3f7g-oWauVybe7gkDblbLW8D0b6AkfNkE8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Instant+Volumetric+Head+Avatars&rft.au=Zielonka%2C+Wojciech&rft.au=Bolkart%2C+Timo&rft.au=Thies%2C+Justus&rft.date=2023-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=4574&rft.epage=4584&rft_id=info:doi/10.1109%2FCVPR52729.2023.00444&rft.externalDocID=10203115