Robust Dynamic Radiance Fields

Dynamic radiance field reconstruction methods aim to model the time-varying structure and appearance of a dynamic scene. Existing methods, however, assume that accurate camera poses can be reliably estimated by Structure from Motion (SfM) algorithms. These methods, thus, are unreliable as SfM algori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) S. 13 - 23
Hauptverfasser: Liu, Yu-Lun, Gao, Chen, Meuleman, Andreas, Tseng, Hung-Yu, Saraf, Ayush, Kim, Changil, Chuang, Yung-Yu, Kopf, Johannes, Huang, Jia-Bin
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2023
Schlagworte:
ISSN:1063-6919
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Dynamic radiance field reconstruction methods aim to model the time-varying structure and appearance of a dynamic scene. Existing methods, however, assume that accurate camera poses can be reliably estimated by Structure from Motion (SfM) algorithms. These methods, thus, are unreliable as SfM algorithms often fail or produce erroneous poses on challenging videos with highly dynamic objects, poorly textured surfaces, and rotating camera motion. We address this robustness issue by jointly estimating the static and dynamic radiance fields along with the camera parameters (poses and focal length). We demonstrate the robustness of our approach via extensive quantitative and qualitative experiments. Our results show favorable performance over the state-of-the-art dynamic view synthesis methods.
AbstractList Dynamic radiance field reconstruction methods aim to model the time-varying structure and appearance of a dynamic scene. Existing methods, however, assume that accurate camera poses can be reliably estimated by Structure from Motion (SfM) algorithms. These methods, thus, are unreliable as SfM algorithms often fail or produce erroneous poses on challenging videos with highly dynamic objects, poorly textured surfaces, and rotating camera motion. We address this robustness issue by jointly estimating the static and dynamic radiance fields along with the camera parameters (poses and focal length). We demonstrate the robustness of our approach via extensive quantitative and qualitative experiments. Our results show favorable performance over the state-of-the-art dynamic view synthesis methods.
Author Saraf, Ayush
Meuleman, Andreas
Kopf, Johannes
Tseng, Hung-Yu
Chuang, Yung-Yu
Huang, Jia-Bin
Liu, Yu-Lun
Gao, Chen
Kim, Changil
Author_xml – sequence: 1
  givenname: Yu-Lun
  surname: Liu
  fullname: Liu, Yu-Lun
  organization: National Taiwan University
– sequence: 2
  givenname: Chen
  surname: Gao
  fullname: Gao, Chen
  organization: Meta
– sequence: 3
  givenname: Andreas
  surname: Meuleman
  fullname: Meuleman, Andreas
  organization: KAIST
– sequence: 4
  givenname: Hung-Yu
  surname: Tseng
  fullname: Tseng, Hung-Yu
  organization: Meta
– sequence: 5
  givenname: Ayush
  surname: Saraf
  fullname: Saraf, Ayush
  organization: Meta
– sequence: 6
  givenname: Changil
  surname: Kim
  fullname: Kim, Changil
  organization: Meta
– sequence: 7
  givenname: Yung-Yu
  surname: Chuang
  fullname: Chuang, Yung-Yu
  organization: National Taiwan University
– sequence: 8
  givenname: Johannes
  surname: Kopf
  fullname: Kopf, Johannes
  organization: Meta
– sequence: 9
  givenname: Jia-Bin
  surname: Huang
  fullname: Huang, Jia-Bin
  organization: Meta
BookMark eNotzM1KAzEUQOEoCtY6b1BkXmDGe3OTTO5SRqtCQRnUbcnkByLtVJq66Ntb0NXZHL5rcTHtpijEAqFFBL7rP98GLTvJrQRJLQAgnImKO7akgQAl23MxQzDUGEa-ElUpX6eNJKJhOxO3w278KYf64Ti5bfb14EJ2k4_1MsdNKDfiMrlNidV_5-Jj-fjePzer16eX_n7VZAnq0IyqC9DphEFDdE4pr31EnUizkcyAzlMKnpSKEHBElxxS6hRaa5L2nuZi8efmGOP6e5-3bn9cI5x0q5h-AQV5P9g
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52729.2023.00010
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798350301298
EISSN 1063-6919
EndPage 23
ExternalDocumentID 10204849
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i204t-b47d075f1d50eaa44c5ce15f359629901ac3fdc344e0d1b1afa13f741886f5cc3
IEDL.DBID RIE
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001058542600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:56:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-b47d075f1d50eaa44c5ce15f359629901ac3fdc344e0d1b1afa13f741886f5cc3
PageCount 11
ParticipantIDs ieee_primary_10204849
PublicationCentury 2000
PublicationDate 2023-June
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.636725
Snippet Dynamic radiance field reconstruction methods aim to model the time-varying structure and appearance of a dynamic scene. Existing methods, however, assume that...
SourceID ieee
SourceType Publisher
StartPage 13
SubjectTerms 3D from multi-view and sensors
Cameras
Computer vision
Dynamics
Heuristic algorithms
Reconstruction algorithms
Robustness
Structure from motion
Title Robust Dynamic Radiance Fields
URI https://ieeexplore.ieee.org/document/10204849
WOSCitedRecordID wos001058542600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RioGpfBTxWWVgTYljO3HmQsSAqqqCqlvl-GypS4ualN-PzwmFhYHNsmRZZ-t05_O99wAehHOOa46xQf9WFVmVxCoTMnbEiis5MhV4Cxav-XSqlsti1oHVAxbGWhuaz-yYhuEvH7dmT6Uy7-FEMyuKHvTyPG_BWoeCCvdPmaxQHTyOJcXjZDGby9Rnj2PSCCemQsLJ_hJRCTGkHPxz91MY_qDxotkhzpzBkd2cw6BLH6POOesLGM231b5uoqdWZD6aB9oBv7ikLrV6CO_l89vkJe7kD-K136iJK5GjD-iOoUys1kIYaSyTjpNgDn1nacMdGi6ETZBVTDvNuCM2GpU5aQy_hP5mu7FXEPkkxqnCuyeiEQy50kwalmpMMqxsml7DkOxdfbQMF6tvU2_-mL-FEzrStmXqDvrNbm_v4dh8Nut6Nwr38gWsjYw7
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BQYKpfBTxWTKwpsSxnTpzoSqiRFFVqm6V47OlLi1qUn4_thMKCwObZcmyztbpzud77wE8MGMMlRRDhfatypIiCkXCeGgcKy6nSITnLZiN-1km5vM0b8DqHgujtfbNZ7rnhv4vH9dq60pl1sMdzSxL9-GAMxaTGq61K6lQ-5hJUtEA5EiUPg5m-YTHNn_sOZVwx1XokLK_ZFR8FBm2_7n_CXR-8HhBvos0p7CnV2fQbhLIoHHP8hy6k3WxLavgqZaZDyaeeMAuHro-tbID78Pn6WAUNgII4dJuVIUF66MN6YYgj7SUjCmuNOGGOskc96ElFTWoKGM6QlIQaSShxvHRiMRwpegFtFbrlb6EwKYxRqTWQREVI0iFJFyRWGKUYKHj-Ao6zt7FR81xsfg29fqP-Xs4Gk3fxovxS_Z6A8fueOsGqltoVZutvoND9Vkty03X39EXLc2Pgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Robust+Dynamic+Radiance+Fields&rft.au=Liu%2C+Yu-Lun&rft.au=Gao%2C+Chen&rft.au=Meuleman%2C+Andreas&rft.au=Tseng%2C+Hung-Yu&rft.date=2023-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=13&rft.epage=23&rft_id=info:doi/10.1109%2FCVPR52729.2023.00010&rft.externalDocID=10204849