Energy Efficient Resource Allocation Approach for Uplink NOMA Multi-Cell Systems Based on Multi-Agent DRL

Nonorthogonal multiple access (NOMA) technology shows the potential for improving spectral efficiency and enables massive connectivity in future wireless networks. Unlike orthogonal schemes that require separate resources for each user, NOMA allows multiple users to share the same frequency and time...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC s. 1 - 6
Hlavní autoři: Rabee, Ayman, Barhumi, Imad
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 21.04.2024
Témata:
ISSN:1558-2612
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Nonorthogonal multiple access (NOMA) technology shows the potential for improving spectral efficiency and enables massive connectivity in future wireless networks. Unlike orthogonal schemes that require separate resources for each user, NOMA allows multiple users to share the same frequency and time resource. However, joint cell association, subchannel assignment, and power allocation problem in uplink multi-cell NOMA systems is NP-hard to solve, posing a significant challenge. In this paper, we formulate this joint problem to maximize energy efficiency and propose a multi-agent deep reinforcement learning-based approach as a solution. In this approach, we adopt the multi-agent twin delayed deep deterministic algorithm (MATD3) for the power allocation and deep Q network for the cell association and subchannel assignment. Simulation results demonstrate that the proposed approach improves the energy efficiency performance of the uplink multi-cell NOMA system and outperforms other methods.
ISSN:1558-2612
DOI:10.1109/WCNC57260.2024.10571217