SPADE: Sparse Pillar-based 3D Object Detection Accelerator for Autonomous Driving
3D object detection using point cloud (PC) data is essential for perception pipelines of autonomous driving, where efficient encoding is key to meeting stringent resource and latency requirements. PointPillars, a widely adopted bird's-eye view (BEV) encoding, aggregates 3D point cloud data into...
Gespeichert in:
| Veröffentlicht in: | Proceedings - International Symposium on High-Performance Computer Architecture S. 454 - 467 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
02.03.2024
|
| Schlagworte: | |
| ISSN: | 2378-203X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | 3D object detection using point cloud (PC) data is essential for perception pipelines of autonomous driving, where efficient encoding is key to meeting stringent resource and latency requirements. PointPillars, a widely adopted bird's-eye view (BEV) encoding, aggregates 3D point cloud data into 2D pillars for fast and accurate 3D object detection. However, the stateof-the-art methods employing PointPillars overlook the inherent sparsity of pillar encoding where only a valid pillar is encoded with a vector of channel elements, missing opportunities for significant computational reduction. Meanwhile, current sparse convolution accelerators are designed to handle only elementwise activation sparsity and do not effectively address the vector sparsity imposed by pillar encoding. In this paper, we propose SPADE, an algorithm-hardware codesign strategy to maximize vector sparsity in pillar-based 3D object detection and accelerate vector-sparse convolution commensurate with the improved sparsity. SPADE consists of three components: (1) a dynamic vector pruning algorithm balancing accuracy and computation savings from vector sparsity, (2) a sparse coordinate management hardware transforming 2D systolic array into a vector-sparse convolution accelerator, and (3) sparsityaware dataflow optimization tailoring sparse convolution schedules for hardware efficiency. Taped-out with a commercial technology, SPADE saves the amount of computation by 36.3-89.2% for representative 3D object detection networks and benchmarks, leading to 1.3-10.9 × speedup and 1.5-12.6 × energy savings compared to the ideal dense accelerator design. These sparsityproportional performance gains equate to 4.1-28.8 × speedup and 90.2-372.3 × energy savings compared to the counterpart server and edge platforms. |
|---|---|
| AbstractList | 3D object detection using point cloud (PC) data is essential for perception pipelines of autonomous driving, where efficient encoding is key to meeting stringent resource and latency requirements. PointPillars, a widely adopted bird's-eye view (BEV) encoding, aggregates 3D point cloud data into 2D pillars for fast and accurate 3D object detection. However, the stateof-the-art methods employing PointPillars overlook the inherent sparsity of pillar encoding where only a valid pillar is encoded with a vector of channel elements, missing opportunities for significant computational reduction. Meanwhile, current sparse convolution accelerators are designed to handle only elementwise activation sparsity and do not effectively address the vector sparsity imposed by pillar encoding. In this paper, we propose SPADE, an algorithm-hardware codesign strategy to maximize vector sparsity in pillar-based 3D object detection and accelerate vector-sparse convolution commensurate with the improved sparsity. SPADE consists of three components: (1) a dynamic vector pruning algorithm balancing accuracy and computation savings from vector sparsity, (2) a sparse coordinate management hardware transforming 2D systolic array into a vector-sparse convolution accelerator, and (3) sparsityaware dataflow optimization tailoring sparse convolution schedules for hardware efficiency. Taped-out with a commercial technology, SPADE saves the amount of computation by 36.3-89.2% for representative 3D object detection networks and benchmarks, leading to 1.3-10.9 × speedup and 1.5-12.6 × energy savings compared to the ideal dense accelerator design. These sparsityproportional performance gains equate to 4.1-28.8 × speedup and 90.2-372.3 × energy savings compared to the counterpart server and edge platforms. |
| Author | Yoon, Minyong Kim, Hyungmin Lee, Janghwan Lee, Minjae Park, Seongmin Kim, Nam Sung Choi, Jungwook Kang, Mingu Choi, Jun Won |
| Author_xml | – sequence: 1 givenname: Minjae surname: Lee fullname: Lee, Minjae email: lmj4666@hanyang.ac.kr organization: Hanyang University – sequence: 2 givenname: Seongmin surname: Park fullname: Park, Seongmin email: skstjdals@hanyang.ac.kr organization: Hanyang University – sequence: 3 givenname: Hyungmin surname: Kim fullname: Kim, Hyungmin email: kong4274@hanyang.ac.kr organization: Hanyang University – sequence: 4 givenname: Minyong surname: Yoon fullname: Yoon, Minyong email: ycivil93@hanyang.ac.kr organization: Hanyang University – sequence: 5 givenname: Janghwan surname: Lee fullname: Lee, Janghwan email: hwanii0288@hanyang.ac.kr organization: Hanyang University – sequence: 6 givenname: Jun Won surname: Choi fullname: Choi, Jun Won email: junwchoi@hanyang.ac.kr organization: Hanyang University – sequence: 7 givenname: Nam Sung surname: Kim fullname: Kim, Nam Sung email: nskim@illinois.edu organization: University of Illinois at Urbana-Champaign – sequence: 8 givenname: Mingu surname: Kang fullname: Kang, Mingu email: mingu@ucsd.edu organization: University of California,San Diego – sequence: 9 givenname: Jungwook surname: Choi fullname: Choi, Jungwook email: choij@hanyang.ac.kr organization: Hanyang University |
| BookMark | eNotjs1Kw0AURkdRsK19gy7mBVLv_Gfchaa1QqGRKrgrk8yNTEmTMkkF396ALg5nc_j4puSu7VokZMFgyRjYp22xypTRSi45cLkEAMluyNwamwoFwgom-C2ZcGHShIP4fCDTvj-NGbeKTcjbocjy9TM9XFzskRahaVxMStejpyKn-_KE1UBzHEaFrqVZVWGD0Q1dpPVIdh26tjt3157mMXyH9uuR3Neu6XH-7xn52KzfV9tkt395XWW7JHCQQ1ICY95b5FhWVZ16LWrhtETlrbcO9Xidy8pzwV1pFHhtQNbeaSiZMMoxMSOLv92AiMdLDGcXf44MpNESlPgF8PRRcw |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/HPCA57654.2024.00041 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798350393132 |
| EISSN | 2378-203X |
| EndPage | 467 |
| ExternalDocumentID | 10476405 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) funderid: 10.13039/501100003725 – fundername: Institute of Information & communications Technology Planning & Evaluation (IITP) grantid: IITP2024-RS-2023-00253914 funderid: 10.13039/100019635 – fundername: Korea government (MSIT) grantid: 2022-0-00957 funderid: 10.13039/501100014188 |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i204t-b011dd9e2ebccf8d63f3a64e5d9d9ae603924cd232ab750d6704fda60b1375a13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001207751400030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:09:38 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-b011dd9e2ebccf8d63f3a64e5d9d9ae603924cd232ab750d6704fda60b1375a13 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_10476405 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-March-2 |
| PublicationDateYYYYMMDD | 2024-03-02 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-March-2 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings - International Symposium on High-Performance Computer Architecture |
| PublicationTitleAbbrev | HPCA |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002951 |
| Score | 2.3347068 |
| Snippet | 3D object detection using point cloud (PC) data is essential for perception pipelines of autonomous driving, where efficient encoding is key to meeting... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 454 |
| SubjectTerms | Convolution Encoding Energy conservation Heuristic algorithms Object detection Three-dimensional displays Vectors |
| Title | SPADE: Sparse Pillar-based 3D Object Detection Accelerator for Autonomous Driving |
| URI | https://ieeexplore.ieee.org/document/10476405 |
| WOSCitedRecordID | wos001207751400030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmAqH0V8ywOrqZ24dsIWtVQdUAkqoG6V7XOkLmmVJvx-bDctYmBgsyI5kc4638vdvXcIPUg-YCY2ijANCfGSb0RHsSFUaFkAJAICQ-7zRU6nyXye5i1ZPXBhrLWh-cw--mWo5cPKND5V1veyAoJ7xdJDKcWWrLW_diOHFVpuHKNpf5IPM4elQ94k4kGUk_2aoBICyLj7z0-foN4PFQ_n-yBzig5seYa6u1kMuHXNc_Q2y51Nn_Bs7f5U3RY_TKgiPkYBjkf4Vft8Cx7ZOrRelTgzxgWcUGPHDrfirKk9vWHVbPCoWvosQw99jJ_fhxPSjksgy4jymmjnqgCpjaw2pkhAxEWsBLcDSCFVVlAHhbgBB6GUdjgBhKS8ACWoZrEcKBZfoE65Ku0lwu4lCbCioKA1tylXzusLG0nBQGglzBXqeRMt1ltFjMXOOtd_PL9Bx_4UQu9WdIs6ddXYO3RkvurlproP5_gNt3Ke1g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQIMFUHkW88cBqaieOk7BVLVURpQS1oG6V7XOkLmmVJvx-bPeBGBjYrEhOpLPO9-Xuvu8Quo95xHSoJWEKEuIk34gKQk2oUHEOkAjwDLnPQTwcJpNJmq3J6p4LY4zxzWfmwS19LR_munapspaTFRDcKZbuRZwHdEXX2l68gUULa3Yco2mrn3XaFk37zEnAvSwn-zVDxYeQXuOfHz9CzR8yHs62YeYY7ZjiBDU20xjw2jlP0fsos1Z9xKOF_Ve1W9w4oZK4KAU47OI35TIuuGsq33xV4LbWNuT4Kju2yBW368oRHOb1EnfLmcszNNFH72nc6ZP1wAQyCyiviLLOCpCawCit8wREmIdScBNBCqk0glowxDVYECWVRQogYspzkIIqFsaRZOEZ2i3mhTlH2L4kAZbnFJTiJuXS-n1uglgwEEoKfYGazkTTxUoTY7qxzuUfz-_QQX_8OpgOnocvV-jQnYjv5Aqu0W5V1uYG7euvarYsb_2ZfgMqQ6Id |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Symposium+on+High-Performance+Computer+Architecture&rft.atitle=SPADE%3A+Sparse+Pillar-based+3D+Object+Detection+Accelerator+for+Autonomous+Driving&rft.au=Lee%2C+Minjae&rft.au=Park%2C+Seongmin&rft.au=Kim%2C+Hyungmin&rft.au=Yoon%2C+Minyong&rft.date=2024-03-02&rft.pub=IEEE&rft.eissn=2378-203X&rft.spage=454&rft.epage=467&rft_id=info:doi/10.1109%2FHPCA57654.2024.00041&rft.externalDocID=10476405 |