SPARF: Neural Radiance Fields from Sparse and Noisy Poses

Neural Radiance Field (NeRF) has recently emerged as a powerful representation to synthesize photorealistic novel views. While showing impressive performance, it relies on the availability of dense input views with highly accurate camera poses, thus limiting its application in real-world scenarios....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 4190 - 4200
Hlavní autoři: Truong, Prune, Rakotosaona, Marie-Julie, Manhardt, Fabian, Tombari, Federico
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2023
Témata:
ISSN:1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Neural Radiance Field (NeRF) has recently emerged as a powerful representation to synthesize photorealistic novel views. While showing impressive performance, it relies on the availability of dense input views with highly accurate camera poses, thus limiting its application in real-world scenarios. In this work, we introduce Sparse Pose Adjusting Radiance Field (SPARF), to address the challenge of novel-view synthesis given only few wide-baseline input images (as low as 3) with noisy camera poses. Our approach exploits multi-view geometry constraints in order to jointly learn the NeRF and refine the camera poses. By relying on pixel matches extracted between the input views, our multiview correspondence objective enforces the optimized scene and camera poses to converge to a global and geometrically accurate solution. Our depth consistency loss further encourages the reconstructed scene to be consistent from any viewpoint. Our approach sets a new state of the art in the sparse-view regime on multiple challenging datasets.
AbstractList Neural Radiance Field (NeRF) has recently emerged as a powerful representation to synthesize photorealistic novel views. While showing impressive performance, it relies on the availability of dense input views with highly accurate camera poses, thus limiting its application in real-world scenarios. In this work, we introduce Sparse Pose Adjusting Radiance Field (SPARF), to address the challenge of novel-view synthesis given only few wide-baseline input images (as low as 3) with noisy camera poses. Our approach exploits multi-view geometry constraints in order to jointly learn the NeRF and refine the camera poses. By relying on pixel matches extracted between the input views, our multiview correspondence objective enforces the optimized scene and camera poses to converge to a global and geometrically accurate solution. Our depth consistency loss further encourages the reconstructed scene to be consistent from any viewpoint. Our approach sets a new state of the art in the sparse-view regime on multiple challenging datasets.
Author Rakotosaona, Marie-Julie
Tombari, Federico
Manhardt, Fabian
Truong, Prune
Author_xml – sequence: 1
  givenname: Prune
  surname: Truong
  fullname: Truong, Prune
  email: prune.truong@vision.ee.ethz.ch
  organization: ETH Zurich
– sequence: 2
  givenname: Marie-Julie
  surname: Rakotosaona
  fullname: Rakotosaona, Marie-Julie
  email: mrakotosaona@google.com
  organization: Google
– sequence: 3
  givenname: Fabian
  surname: Manhardt
  fullname: Manhardt, Fabian
  email: fabianmanhardt@google.com
  organization: Google
– sequence: 4
  givenname: Federico
  surname: Tombari
  fullname: Tombari, Federico
  email: tombari@google.com
  organization: Google
BookMark eNotzM1Kw0AUQOFRFKw1b9DFvEDinZ9MMu5KMFUoNaTqttx07sBImpSMLvr2BnR1Nofvnt0M40CMrQRkQoB9rD6bNpeFtJkEqTIADeUVS2xhS5WDAiFtec0WAoxKjRX2jiUxfgGAkkIYWy6Y3Tfrtn7iO_qZsOctuoDDkXgdqHeR-2k88f0Zp0gcB8d3Y4gX3oyR4gO79dhHSv67ZB_183v1km7fNq_VepsGCfo7RXSyFAbJdcaT94IQ0IDyRWG01yovjNHu2FFHWun5Eho9FNB1ttPeabVkqz83ENHhPIUTTpeDgFmfXfULWwdKBA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52729.2023.00408
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798350301298
EISSN 1063-6919
EndPage 4200
ExternalDocumentID 10204816
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i204t-aad2816aedb6feff1ea0a603f7764f4357664dcbebe434edb14af070bb9b4fd43
IEDL.DBID RIE
ISICitedReferencesCount 81
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001058542604051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:56:33 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-aad2816aedb6feff1ea0a603f7764f4357664dcbebe434edb14af070bb9b4fd43
PageCount 11
ParticipantIDs ieee_primary_10204816
PublicationCentury 2000
PublicationDate 2023-June
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.6295917
Snippet Neural Radiance Field (NeRF) has recently emerged as a powerful representation to synthesize photorealistic novel views. While showing impressive performance,...
SourceID ieee
SourceType Publisher
StartPage 4190
SubjectTerms Cameras
Computer vision
Geometry
Image and video synthesis and generation
Limiting
Pattern recognition
Rendering (computer graphics)
Training
Title SPARF: Neural Radiance Fields from Sparse and Noisy Poses
URI https://ieeexplore.ieee.org/document/10204816
WOSCitedRecordID wos001058542604051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePBUHxXf5OB166bJ5uFNiosHKUur0lvJJhMoyG7ptoL_3iRdKx48eAshIWEmQ2aS-b5B6FY6ktLMuSRVxiaMU5NIyCAhRjBNpWaWRKDwsxiP5WymihasHrEwABCTz2AQmvEv39ZmE57KvIUHmlnCO6gjhNiCtXYPKtSHMlzJFh5HUnU3eism2dB7j4NQI3wQzqv8VUQl3iF575-rH6L-DxoPF7t75gjtQXWMeq37iFvjbE6QmhYPk_weB74N_Y4nkXXAz81DklqDA5AET5c-kAWsK4vH9aL5xEXdQNNHr_njy-gpaSsjJAu_h3WitR36nWgIIDpwjoBONU-pE4Iz5z0gwTmzpvQaYpT5UYRp5427LFXJnGX0FHWruoIzhJ3lQxDW-cGCKWKkygJtl48jrHUypeeoH0QxX27JL-bfUrj4o_8SHQRpb7OprlB3vdrANdo3H-tFs7qJKvsCWoaXEQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oFPQ0PyZ-m4PXzqZJ08SbDMvEWco2ZbeRNgkMpB3rJvjfm3R14sGDtxASEt7LI-8l7_d7ALfcYJ-Exni-yJVHGck9rkPt4TyiknBJFa6BwoMoSfhkItIGrF5jYbTWdfKZ7rpm_ZevynzlnsqshTuaWcy2YSekNMBruNbmSYXYYIYJ3gDksC_uem_pMAys_9h1VcK77sTyX2VU6lskbv9z_QPo_ODxULq5aQ5hSxdH0G4cSNSYZ3UMYpQ-DON75Bg35Dsa1rwDdm7s0tQq5KAkaDS3oaxGslAoKWfVJ0rLSlcdeI0fx72-19RG8GZ2D0tPShXYnUjtYHTaGKylL5lPTBQxaqwPFDFGVZ5ZHVFC7ShMpbHmnWUio0ZRcgKtoiz0KSCjWKAjZezgiAqccxE64i4bSShluE_OoONEMZ2v6S-m31I4_6P_Bvb645fBdPCUPF_AvpP8OrfqElrLxUpfwW7-sZxVi-tafV9ouZpY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=SPARF%3A+Neural+Radiance+Fields+from+Sparse+and+Noisy+Poses&rft.au=Truong%2C+Prune&rft.au=Rakotosaona%2C+Marie-Julie&rft.au=Manhardt%2C+Fabian&rft.au=Tombari%2C+Federico&rft.date=2023-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=4190&rft.epage=4200&rft_id=info:doi/10.1109%2FCVPR52729.2023.00408&rft.externalDocID=10204816