Deep Refinement-Based Joint Source Channel Coding over Time- Varying Channels

In recent developments, deep learning (DL)-based joint source-channel coding (JSCC) for wireless image transmission has made significant strides in performance enhancement. Nonetheless, the majority of existing DL-based JSCC methods are tailored for scenarios featuring stable channel conditions, not...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC s. 1 - 6
Hlavní autoři: Pan, Junyu, Li, Hanlei, Zhang, Guangyi, Cai, Yunlong, Yu, Guanding
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 21.04.2024
Témata:
ISSN:1558-2612
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent developments, deep learning (DL)-based joint source-channel coding (JSCC) for wireless image transmission has made significant strides in performance enhancement. Nonetheless, the majority of existing DL-based JSCC methods are tailored for scenarios featuring stable channel conditions, notably a fixed signal-to-noise ratio (SNR). This specialization poses a limitation, as their performance tends to wane in practical scenarios marked by highly dynamic channels, given that a fixed SNR inadequately represents the dynamic nature of such channels. In response to this challenge, we introduce a novel solution, namely deep refinement-based JSCC (DRJSCC). This innovative method is designed to seamlessly adapt to channels ex-hibiting temporal variations. By leveraging instantaneous channel state information (CSI), we dynamically optimize the encoding strategy through re-encoding the channel symbols. This dynamic adjustment ensures that the encoding strategy consistently aligns with the varying channel conditions during the transmission process. Specifically, our approach begins with the division of encoded symbols into multiple blocks, which are transmitted progressively to the receiver. In the event of changing channel conditions, we propose a mechanism to re-encode the remaining blocks, allowing them to adapt to the current channel conditions. Experimental results show that the DRJSCC scheme achieves comparable performance to the other mainstream DL-based JSCC models in stable channel conditions, and also exhibits great robustness against time-varying channels.
AbstractList In recent developments, deep learning (DL)-based joint source-channel coding (JSCC) for wireless image transmission has made significant strides in performance enhancement. Nonetheless, the majority of existing DL-based JSCC methods are tailored for scenarios featuring stable channel conditions, notably a fixed signal-to-noise ratio (SNR). This specialization poses a limitation, as their performance tends to wane in practical scenarios marked by highly dynamic channels, given that a fixed SNR inadequately represents the dynamic nature of such channels. In response to this challenge, we introduce a novel solution, namely deep refinement-based JSCC (DRJSCC). This innovative method is designed to seamlessly adapt to channels ex-hibiting temporal variations. By leveraging instantaneous channel state information (CSI), we dynamically optimize the encoding strategy through re-encoding the channel symbols. This dynamic adjustment ensures that the encoding strategy consistently aligns with the varying channel conditions during the transmission process. Specifically, our approach begins with the division of encoded symbols into multiple blocks, which are transmitted progressively to the receiver. In the event of changing channel conditions, we propose a mechanism to re-encode the remaining blocks, allowing them to adapt to the current channel conditions. Experimental results show that the DRJSCC scheme achieves comparable performance to the other mainstream DL-based JSCC models in stable channel conditions, and also exhibits great robustness against time-varying channels.
Author Yu, Guanding
Zhang, Guangyi
Li, Hanlei
Pan, Junyu
Cai, Yunlong
Author_xml – sequence: 1
  givenname: Junyu
  surname: Pan
  fullname: Pan, Junyu
  email: junyupan@zju.edu.cn
  organization: College of Information Science and Electronic Engineering, Zhejiang University,Hangzhou,China
– sequence: 2
  givenname: Hanlei
  surname: Li
  fullname: Li, Hanlei
  email: hanleili@zju.edu.cn
  organization: College of Information Science and Electronic Engineering, Zhejiang University,Hangzhou,China
– sequence: 3
  givenname: Guangyi
  surname: Zhang
  fullname: Zhang, Guangyi
  email: zhangguangyi@zju.edu.cn
  organization: College of Information Science and Electronic Engineering, Zhejiang University,Hangzhou,China
– sequence: 4
  givenname: Yunlong
  surname: Cai
  fullname: Cai, Yunlong
  email: ylcai@zju.edu.cn
  organization: College of Information Science and Electronic Engineering, Zhejiang University,Hangzhou,China
– sequence: 5
  givenname: Guanding
  surname: Yu
  fullname: Yu, Guanding
  email: yuguanding@zju.edu.cn
  organization: College of Information Science and Electronic Engineering, Zhejiang University,Hangzhou,China
BookMark eNo1j9tKAzEURaMo2Nb-gWB-IOPJffKo8U5V0KqPJTNzopE2U2ZGwb-3Yn3asNgs9h6TvdxmJOSYQ8E5uJNXf--1FQYKAUIVHLQFLdwOmTrrSqlBgtSl2CUjrnXJhOHigIz7_gNAgFZqRO7OEdf0EWPKuMI8sLPQY0Nv25QH-tR-djVS_x5yxiX1bZPyG22_sKPztEJGX0L3_Yu2jf6Q7Mew7HG6zQl5vryY-2s2e7i68aczlgSogQUrKyubgOBCsEbUzilVSmcq4CYqriusSh5iA9baiEJXpdrQ2goZlWmCnJCjP29CxMW6S6vNkMX_ffkDRYlQKw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WCNC57260.2024.10570529
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Libary (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350303582
EISSN 1558-2612
EndPage 6
ExternalDocumentID 10570529
Genre orig-research
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i204t-a73b73dae09aa762c99448396b016f415beb81afd0777fe25b84415c723f46da3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001268569300027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:04:55 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-a73b73dae09aa762c99448396b016f415beb81afd0777fe25b84415c723f46da3
PageCount 6
ParticipantIDs ieee_primary_10570529
PublicationCentury 2000
PublicationDate 2024-April-21
PublicationDateYYYYMMDD 2024-04-21
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-21
  day: 21
PublicationDecade 2020
PublicationTitle IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC
PublicationTitleAbbrev WCNC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020544
Score 2.2677715
Snippet In recent developments, deep learning (DL)-based joint source-channel coding (JSCC) for wireless image transmission has made significant strides in performance...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
Deep learning
Image coding
Image communication
Receivers
Symbols
Wireless communication
Title Deep Refinement-Based Joint Source Channel Coding over Time- Varying Channels
URI https://ieeexplore.ieee.org/document/10570529
WOSCitedRecordID wos001268569300027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQALryLe8sDqNrGdOF4JVAiJquLZrbLji1QJJVWb8vvxuQ9gYGCLrOQsnRXffb77_BFynVgwOnMp4xwKJjP_zxmQMdN-7Qu-FKsJYhNqMMhGIz1ckdUDFwYAQvMZdPEx1PJdXSzwqKyHmrRYmWqRllJqSdbaoCufe8hVA1cc6d57PsgT5bN1jwG57K4__SWiEmJIf--fs--Tzjcbjw43ceaAbEF1SHZ_XCR4RB5vAab0CUo_hFbYjQ9Ojj7Uk6qhz-F8niKPoIIPmtdohmLrJkUCCKNvZoZkp_Ub8w557d-95PdsJZTAJjySDTNKWCWcgUgb43e3QmuPuoROrU_oSh-iLdgsNqWLvNtK4InNEEYViotSps6IY9Ku6gpOCE11abES6rxBaTx4NIkBYePICg7ORaekg54ZT5d3YYzXTjn7Y_yc7KD_sf7C4wvSbmYLuCTbxWczmc-uwgp-AXm7m1o
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BQQIubEXs-MDVbeI4cXwlUBVoqwrKcqvseCJVQknVpnw_droABw7cIisZSx7FM88zzw_gOtSoZGwiyhimlMf2n1PIfSqt71M2F6upxCZErxe_v8v-gqxecWEQsWo-w4Z7rGr5pkhn7qis6TRpXWVqHTZCzpk_p2ut8JXNPviihcv3ZPMt6SWhsPm6RYGMN5Yf_5JRqaJIa_ef8-9B_ZuPR_qrSLMPa5gfwM6PqwQPoXuLOCZPmNkhZ4Xe2PBkyEMxykvyXJ3QE8ckyPGDJIUzQ1zzJnEUEEpe1cTRnZZvTOvw0robJG26kEqgI-bxkioRaBEYhZ5Uyu5vqZQWdwUy0jaly2yQ1qhjX2XGE0JkyEIdOyCVChZkPDIqOIJaXuR4DCSSmXa1UGMNcmXhowoVBtr3dMDQGO8E6m5lhuP5bRjD5aKc_jF-BVvtQbcz7Nz3Hs9g2_nCVWOYfw61cjLDC9hMP8vRdHJZefMLv_-eoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Wireless+Communications+and+Networking+Conference+%3A+%5Bproceedings%5D+%3A+WCNC&rft.atitle=Deep+Refinement-Based+Joint+Source+Channel+Coding+over+Time-+Varying+Channels&rft.au=Pan%2C+Junyu&rft.au=Li%2C+Hanlei&rft.au=Zhang%2C+Guangyi&rft.au=Cai%2C+Yunlong&rft.date=2024-04-21&rft.pub=IEEE&rft.eissn=1558-2612&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FWCNC57260.2024.10570529&rft.externalDocID=10570529