Learning Based Joint Coding-Modulation for Digital Semantic Communication Systems

In learning-based semantic communications, neural networks have replaced different building blocks in traditional communication systems. However, the digital modulation still remains a challenge for neural networks. The intrinsic mech-anism of neural network based digital modulation is mapping conti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 14th International Conference on Wireless Communications and Signal Processing (WCSP) S. 1 - 6
Hauptverfasser: Bo, Yufei, Duan, Yiheng, Shao, Shuo, Tao, Meixia
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.11.2022
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In learning-based semantic communications, neural networks have replaced different building blocks in traditional communication systems. However, the digital modulation still remains a challenge for neural networks. The intrinsic mech-anism of neural network based digital modulation is mapping continuous output of the neural network encoder into discrete constellation symbols, which is a non-differentiable function that cannot be trained with existing gradient descend algorithms. To overcome this challenge, in this paper we develop a joint coding-modulation scheme for digital semantic communications with BPSK modulation. In our method, the neural network outputs the likelihood of each constellation point, instead of having a concrete mapping. A random code rather than a deterministic code is hence used, which preserves more information for the symbols with a close likelihood on each constellation point. The joint coding-modulation design can match the modulation process with channel states, and hence improve the performance of digital semantic communications. Experiment results show that our method outperforms existing digital modulation methods in semantic communications over a wide range of SNR, and outperforms neural network based analog modulation method in low SNR regime.
AbstractList In learning-based semantic communications, neural networks have replaced different building blocks in traditional communication systems. However, the digital modulation still remains a challenge for neural networks. The intrinsic mech-anism of neural network based digital modulation is mapping continuous output of the neural network encoder into discrete constellation symbols, which is a non-differentiable function that cannot be trained with existing gradient descend algorithms. To overcome this challenge, in this paper we develop a joint coding-modulation scheme for digital semantic communications with BPSK modulation. In our method, the neural network outputs the likelihood of each constellation point, instead of having a concrete mapping. A random code rather than a deterministic code is hence used, which preserves more information for the symbols with a close likelihood on each constellation point. The joint coding-modulation design can match the modulation process with channel states, and hence improve the performance of digital semantic communications. Experiment results show that our method outperforms existing digital modulation methods in semantic communications over a wide range of SNR, and outperforms neural network based analog modulation method in low SNR regime.
Author Bo, Yufei
Duan, Yiheng
Tao, Meixia
Shao, Shuo
Author_xml – sequence: 1
  givenname: Yufei
  surname: Bo
  fullname: Bo, Yufei
  email: boyufei01@sjtu.edu.cn
  organization: Shanghai Jiao Tong University,Department of Electronic Engineering,Shanghai,China
– sequence: 2
  givenname: Yiheng
  surname: Duan
  fullname: Duan, Yiheng
  email: duanyiheng@sjtu.edu.cn
  organization: Shanghai Jiao Tong University,Department of Electronic Engineering,Shanghai,China
– sequence: 3
  givenname: Shuo
  surname: Shao
  fullname: Shao, Shuo
  email: shuoshao@sjtu.edu.cn
  organization: Shanghai Jiao Tong University,Department of Electronic Engineering,Shanghai,China
– sequence: 4
  givenname: Meixia
  surname: Tao
  fullname: Tao, Meixia
  email: mxtao@sjtu.edu.cn
  organization: Shanghai Jiao Tong University,Department of Electronic Engineering,Shanghai,China
BookMark eNo1z8FKxDAYBOAIenBX30AwL9D6J03S5qhVV6WiUsXj8jdJl0CbSJs97NtbWD0NDB8DsyKnIQZHyDWDnDHQN991-y6lKFXOgfOcARRaiPKErJhSUkioJDsnH43DKfiwo3c4O0tfog-J1tEuVfYa7X7A5GOgfZzovd_5hANt3YghebOwcdwHb46kPczJjfMFOetxmN3lX67J1-PDZ_2UNW-b5_q2yTwHkTKEquyt5M4oXsoKGdMdVxIYmM4YNKpDp3lhCmmMdhqhW7BFQIWiF50t1uTquOudc9ufyY84Hbb_N4tfxV9Opw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WCSP55476.2022.10039447
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665450851
9781665450850
EndPage 6
ExternalDocumentID 10039447
Genre orig-research
GrantInformation_xml – fundername: NSF of China
  grantid: 62125108,61901261,12031011
  funderid: 10.13039/501100012226
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i204t-a087fd52ec62758a119b265010cbccac6bae923c35cc9e9a0bd52da0a6a4f4bd3
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000972901000067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:58:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-a087fd52ec62758a119b265010cbccac6bae923c35cc9e9a0bd52da0a6a4f4bd3
PageCount 6
ParticipantIDs ieee_primary_10039447
PublicationCentury 2000
PublicationDate 2022-Nov.-1
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-Nov.-1
  day: 01
PublicationDecade 2020
PublicationTitle 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP)
PublicationTitleAbbrev WCSP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.3807473
Snippet In learning-based semantic communications, neural networks have replaced different building blocks in traditional communication systems. However, the digital...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms digital modulation
Semantic communications
variational autoen-coder
Title Learning Based Joint Coding-Modulation for Digital Semantic Communication Systems
URI https://ieeexplore.ieee.org/document/10039447
WOSCitedRecordID wos000972901000067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA22ePCkYsVvcvCams1-pHu1WkSwrFSxtzJJZsse3JW69fc72d0qPXjwFsJA4A1hHsm8eYxdgzIGQuN1W6BFZBMjTBxqIUcaAG0SoHKN2YSeTkfzeZp1YvVGC4OITfMZDv2y-ct3lV37pzK64dLrOHWP9bROWrFW17MVyPTmbTzLqDpq33mg1HATveWb0pSNyf4_Dzxgg18BHs9-Sssh28HyiD13s1CX_JZKj-OPVVHWfFz5EPFUuc6IixMN5XfF0ruB8Bm-E3SF5VtCEN7NKR-w18n9y_hBdI4IolAyqgUQhLmLFYGoiOhDEKRGEccKpDWUCkIakBibDWNrU0xBGgp2ICGBKI-MC49Zv6xKPGE8VwnmKepR7IjVUcqUBk3kBoIkNsrAKRt4PBYf7dCLxQaKsz_2z9meR72V6V2wfr1a4yXbtV918bm6alL1DRNsmEE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDl5Ts9lHulerxUdbKq3YW5k8tuzBXalbf7-Tbar04MFbCAOBbwjzkcw3HyHXIJSCUDndFkgW6UQxFYeS8bYEsDoJrDC12YQcDNqTSTr0YvVaC2OtrZvPbMst6798U-qFeyrDG86djlNuki1nneXlWr5rK-DpzVtnNMT6KF3vgRCtVfyac0pdOLp7_zxynzR_JXh0-FNcDsiGLQ7Ji5-GOqO3WHwMfSrzoqKd0oWwfmm8FRdFIkrv8pnzA6Ej-47g5ZquSUGon1TeJK_d-3HngXlPBJYLHlUMEMTMxAJhFEj1IQhSJZBlBVwrTAZiDRY5mw5jrVObAlcYbIBDAlEWKRMekUZRFvaY0EwkNkutbMcGeR0mTUiQSG8gSGIlFJyQpsNj-rEcezFdQXH6x_4V2XkY93vT3uPg-YzsugwsRXvnpFHNF_aCbOuvKv-cX9Zp-wYxQJuK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+14th+International+Conference+on+Wireless+Communications+and+Signal+Processing+%28WCSP%29&rft.atitle=Learning+Based+Joint+Coding-Modulation+for+Digital+Semantic+Communication+Systems&rft.au=Bo%2C+Yufei&rft.au=Duan%2C+Yiheng&rft.au=Shao%2C+Shuo&rft.au=Tao%2C+Meixia&rft.date=2022-11-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FWCSP55476.2022.10039447&rft.externalDocID=10039447