Classifying a Sensorimotor Skill of Periodontal Probing

Currently available dental simulators provide a wide range of visual, auditory, and haptic cues to play back the pre-recorded skill, however, they do not extract skill descriptors and do not attempt to model the skill. To ensure efficient communication of a sensorimotor skill, a model that captures...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International Conference on Automation, Robotics and Applications (Online) s. 334 - 339
Hlavní autori: Babushkin, Vahan, Hassan Jamil, Muhammad, Sefo, Dianne L., Loomer, Peter M., Eid, Mohamad
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 10.02.2023
Predmet:
ISSN:2767-7745
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Currently available dental simulators provide a wide range of visual, auditory, and haptic cues to play back the pre-recorded skill, however, they do not extract skill descriptors and do not attempt to model the skill. To ensure efficient communication of a sensorimotor skill, a model that captures the skill's main features and provides real-time feedback and guidance based on the user's expertise is desirable. To develop this model, a complex periodontal probing skill can be considered as a composition of primitives, that can be extracted from the recordings of several professionals performing the probing task. This model will be capable of evaluating the user's proficiency level to ensure adaptation and providing corresponding guidance and feedback. We developed a SVM model that characterizes the sensorimotor skill of periodontal probing by detecting the specific region of the tooth being probed. We explore the features affecting the accuracy of the model and provide a reduced feature set capable of capturing the regions with relatively high accuracy. Finally, we consider the problem of periodontal pocket detection. The SVM model trained to detect pockets was able to achieve a recall around 0.68. We discuss challenges associated with pocket detection and propose directions for future work.
AbstractList Currently available dental simulators provide a wide range of visual, auditory, and haptic cues to play back the pre-recorded skill, however, they do not extract skill descriptors and do not attempt to model the skill. To ensure efficient communication of a sensorimotor skill, a model that captures the skill's main features and provides real-time feedback and guidance based on the user's expertise is desirable. To develop this model, a complex periodontal probing skill can be considered as a composition of primitives, that can be extracted from the recordings of several professionals performing the probing task. This model will be capable of evaluating the user's proficiency level to ensure adaptation and providing corresponding guidance and feedback. We developed a SVM model that characterizes the sensorimotor skill of periodontal probing by detecting the specific region of the tooth being probed. We explore the features affecting the accuracy of the model and provide a reduced feature set capable of capturing the regions with relatively high accuracy. Finally, we consider the problem of periodontal pocket detection. The SVM model trained to detect pockets was able to achieve a recall around 0.68. We discuss challenges associated with pocket detection and propose directions for future work.
Author Sefo, Dianne L.
Eid, Mohamad
Babushkin, Vahan
Hassan Jamil, Muhammad
Loomer, Peter M.
Author_xml – sequence: 1
  givenname: Vahan
  surname: Babushkin
  fullname: Babushkin, Vahan
  email: vahan.babushkin@nyu.edu
  organization: Tandon School of Engineering, New York University,NYC,USA,11201
– sequence: 2
  givenname: Muhammad
  surname: Hassan Jamil
  fullname: Hassan Jamil, Muhammad
  email: hassan.jamil@nyu.edu
  organization: New York University Abu Dhabi,Engineering Division,Abu Dhabi,UAE,129188
– sequence: 3
  givenname: Dianne L.
  surname: Sefo
  fullname: Sefo, Dianne L.
  email: dlp6@nyu.edu
  organization: NYU College of Dentistry, New York University,New York,NY,USA,10010
– sequence: 4
  givenname: Peter M.
  surname: Loomer
  fullname: Loomer, Peter M.
  email: loomer@uthscsa.edu
  organization: School of Dentistry, University of Texas Health Science Center,San Antonio,TX,USA,78229
– sequence: 5
  givenname: Mohamad
  surname: Eid
  fullname: Eid, Mohamad
  email: mohamad.eid@nyu.edu
  organization: New York University Abu Dhabi,Engineering Division,Abu Dhabi,UAE,129188
BookMark eNo1j81KAzEURqMo2Na-gYu8wIzJzc9NlmVQKxQsVtcl10kkOk5kZjZ9ewfU1bc5HM63ZBd96SNjXIpaSuFvH5vN88ZYI20NAlQthQSDWp2xpbTWaOdB-nO2ALRYIWpzxdbj-CGEUCCUt2bBsOnCOOZ0yv07D_wQ-7EM-atMZeCHz9x1vCS-j0Mubemn0PH9UGhmr9llCt0Y13-7Yq_3dy_Ntto9PcxZuyqD0FPlU-u0awM5Q2QILBAYihq0E44QbHojkl5q3QIS-hgUOisTGqcIjVArdvPrzTHG4_ecFobT8f-o-gGOMElF
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICARA56516.2023.10125743
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665489219
9781665489218
EISSN 2767-7745
EndPage 339
ExternalDocumentID 10125743
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i204t-9fd848dab85bb5b262b25be424808b726fcbb19144d27b79ea37861f7583b7503
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001009105100064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:58:25 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-9fd848dab85bb5b262b25be424808b726fcbb19144d27b79ea37861f7583b7503
PageCount 6
ParticipantIDs ieee_primary_10125743
PublicationCentury 2000
PublicationDate 2023-Feb.-10
PublicationDateYYYYMMDD 2023-02-10
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-Feb.-10
  day: 10
PublicationDecade 2020
PublicationTitle International Conference on Automation, Robotics and Applications (Online)
PublicationTitleAbbrev ICARA
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203965
Score 1.8221251
Snippet Currently available dental simulators provide a wide range of visual, auditory, and haptic cues to play back the pre-recorded skill, however, they do not...
SourceID ieee
SourceType Publisher
StartPage 334
SubjectTerms Adaptation models
Feature extraction
Haptic interfaces
Haptics and Haptic Interfaces
Learning from Demonstration
Predictive models
Sensorimotor Learning
Support vector machines
Teeth
Virtual Reality and Interfaces
Visualization
Title Classifying a Sensorimotor Skill of Periodontal Probing
URI https://ieeexplore.ieee.org/document/10125743
WOSCitedRecordID wos001009105100064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePCk4opvcvC67W42z2MpFgUpxSr0VjKbRBZLV7atv98k7VY8ePAWAgmZSWDyzcw3g9A90JxCJl3qhPMARYJLPQxiqTNS5aaU0ulYMv9ZjMdyNlOTHVk9cmGstTH5zPbCMMbyTV1ugqusH2pRMW_yOqgjBN-StfYOlYJkheKszdbJVP9pOHgZ-A9LHlIRSNFrl_9qpBLtyOj4nyc4QckPIw9P9rbmFB3Y5RkSsaNlFZlKWOOpR6R1E3RfN3j6US0WuHZ44p-Yh56B9Bh28ED4PUFvo4fX4WO6a4SQViSj61R5zVFpNEgGwIBwAoSBpYTKTIIg3JUAoVAbNUSAUFYXQvLceSxQQAhUnqPusl7aC4S50gxCLM8jLcqd0MwSMNow4XGdk-4SJUHq-ee21sW8Ffjqj_lrdBR0G_KY8-wGddfNxt6iw_JrXa2au3hD342UkKU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aBT2pWPHbHLxuu5tNNsmxFEuLtRRbobeS2SSyWLqybv39JrGtePDgLeQwZCaByZuZN4PQPdCEQixsZLl1AEWAjRwMYpHVQiY6F8Kq0DJ_yEcjMZvJ8ZqsHrgwxphQfGZafhly-brMVz5U1va9qJhzebtoz4_OWtO1tiGVlMSpzNimXieW7UG389xxX5bEFyOQtLUR8GuUSvAkvaN_nuEYNX84eXi89TYnaMcsTxEPMy2LwFXCCk8cJi0rb_2ywpO3YrHApcVj98gc-PS0Ry_BQeHXJnrpPUy7_Wg9CiEqSEzrSDrbUaEVCAbAgGQECANDCRWxAE4ymwP4Vm1UEw5cGpVykSXWoYEUfKryDDWW5dKcI5xJxcBn8xzWopnlihkCWmnGHbKzwl6gptd6_v7d7WK-Ufjyj_07dNCfPg3nw8Ho8Qodejv7quYkvkaNulqZG7Sff9bFR3UbbusLTEuT7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Automation%2C+Robotics+and+Applications+%28Online%29&rft.atitle=Classifying+a+Sensorimotor+Skill+of+Periodontal+Probing&rft.au=Babushkin%2C+Vahan&rft.au=Hassan+Jamil%2C+Muhammad&rft.au=Sefo%2C+Dianne+L.&rft.au=Loomer%2C+Peter+M.&rft.date=2023-02-10&rft.pub=IEEE&rft.eissn=2767-7745&rft.spage=334&rft.epage=339&rft_id=info:doi/10.1109%2FICARA56516.2023.10125743&rft.externalDocID=10125743