Power System Anomaly Detection Via Ensemble of Encoder and Decoder Networks
Hacking and false data injection from adversaries can threaten power grids' normal operations and cause significant economic loss. Anomaly detection in power grids aims to detect and discriminate anomalies caused by the cyberattack against the power system which is essential for keeping power g...
Uloženo v:
| Vydáno v: | 2022 IEEE Electrical Power and Energy Conference (EPEC) s. 116 - 122 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
05.12.2022
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Hacking and false data injection from adversaries can threaten power grids' normal operations and cause significant economic loss. Anomaly detection in power grids aims to detect and discriminate anomalies caused by the cyberattack against the power system which is essential for keeping power grids working properly and efficiently. Different types of methods have been applied for anomaly detection such as statistical methods and machine learning-based methods. For machine learning-based methods, we usually need to model the distribution of normal data. In this work, we propose a novel anomaly detection method by modeling the data distribution of normal samples via multiple encoders and decoders. Specifically, the proposed method maps input samples into a latent space and then reconstructs output samples from latent vectors. The extra encoder finally maps reconstructed samples into the latent representations. During the training phase, parameters are optimized by minimizing reconstruction loss and encoding loss. Furthermore, training samples are re-weighted to focus more on missed correlations among features of normal data. Experiment results on network intrusion and power system datasets demonstrate the effectiveness of our proposed method, where our model consistently outperforms all baselines. |
|---|---|
| AbstractList | Hacking and false data injection from adversaries can threaten power grids' normal operations and cause significant economic loss. Anomaly detection in power grids aims to detect and discriminate anomalies caused by the cyberattack against the power system which is essential for keeping power grids working properly and efficiently. Different types of methods have been applied for anomaly detection such as statistical methods and machine learning-based methods. For machine learning-based methods, we usually need to model the distribution of normal data. In this work, we propose a novel anomaly detection method by modeling the data distribution of normal samples via multiple encoders and decoders. Specifically, the proposed method maps input samples into a latent space and then reconstructs output samples from latent vectors. The extra encoder finally maps reconstructed samples into the latent representations. During the training phase, parameters are optimized by minimizing reconstruction loss and encoding loss. Furthermore, training samples are re-weighted to focus more on missed correlations among features of normal data. Experiment results on network intrusion and power system datasets demonstrate the effectiveness of our proposed method, where our model consistently outperforms all baselines. |
| Author | Zinflou, Arnaud Sun, Xijuan Boulet, Benoit Wu, Di |
| Author_xml | – sequence: 1 givenname: Xijuan surname: Sun fullname: Sun, Xijuan email: xijuan.sun@mail.mcgill.ca organization: McGill University,Department of Electrical and Computer Engineering,Montreal,Canada – sequence: 2 givenname: Di surname: Wu fullname: Wu, Di email: di.wu5@mcgill.ca organization: McGill University,Department of Electrical and Computer Engineering,Montreal,Canada – sequence: 3 givenname: Arnaud surname: Zinflou fullname: Zinflou, Arnaud email: zinflou.arnaud@hydroquebec.com organization: Hydro-Québec's research institute,Montreal,Canada – sequence: 4 givenname: Benoit surname: Boulet fullname: Boulet, Benoit email: benoit.boulet@mcgill.ca organization: McGill University,Department of Electrical and Computer Engineering,Montreal,Canada |
| BookMark | eNo1T81KxDAYjKAHd_UNBPMCrfmSNE2OS62uuOiCP3hb0uQLFNtE2sLSt7ewOpeZgZmBWZHzmCIScgssB2Dmrt7XVaEMEzlnnOfAFvCCnZEVKFVIJUB_XZLnfTriQN_mccKebmLqbTfTe5zQTW2K9LO1tI4j9k2HNIVFu-SXgo1-SZ30C07HNHyPV-Qi2G7E6z9ek4-H-r3aZrvXx6dqs8tazuSUGY0QrIZG8eCcKr02HDxjaLyExZcOG3SNFaW0pXRKNEoYpwN4lA4cijW5Oe22iHj4GdreDvPh_6D4BUqDS6g |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/EPEC56903.2022.10000250 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 166546318X 9781665463188 |
| EndPage | 122 |
| ExternalDocumentID | 10000250 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i204t-98e1fa81b62fcc67d8921d00e9d41c677cebecba374a74c63b639c8f1de4c1ce3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000946642000020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jan 18 11:13:56 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-98e1fa81b62fcc67d8921d00e9d41c677cebecba374a74c63b639c8f1de4c1ce3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_10000250 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Dec.-5 |
| PublicationDateYYYYMMDD | 2022-12-05 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec.-5 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE Electrical Power and Energy Conference (EPEC) |
| PublicationTitleAbbrev | EPEC |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8299341 |
| Snippet | Hacking and false data injection from adversaries can threaten power grids' normal operations and cause significant economic loss. Anomaly detection in power... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 116 |
| SubjectTerms | Anomaly detection Correlation Data models Decoding encoder and decoder ensemble Feature extraction Learning systems one-class classification power system Time series analysis Training |
| Title | Power System Anomaly Detection Via Ensemble of Encoder and Decoder Networks |
| URI | https://ieeexplore.ieee.org/document/10000250 |
| WOSCitedRecordID | wos000946642000020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aPHhSseI3OXhNu_losjnXLYKw7EGlt5JNJlBot9JuBf-9SbZVPHjwNllCFmYOk5e8l4fQg-PCZpZ7ImvJiXDakgCbNbHRc7pmcZfvk9mEKst8OtXVTqyetDAAkMhnMIhhust3K7uNR2XDdBbNIkI_VEp2Yq0dZ4tmelhUxXgU0B4PsI-xwX72L9-U1DYmJ__84Snq_wjwcPXdWs7QATTn6LmKjma4e2McB9y-NItP_AhtYlM1-G1ucNFsYFkvAK98iKNefY1N48KsLi471vemj14nxcv4iey8EMicZaIlOgfqTdhjSuatlcrlmlGXZaCdoGGsbKxGbbgSRgkreUi9trmnDoSlFvgF6jWrBi4RDg1Je6qdCTUSuRRhVVMzBiNXO8FNdoX6MROz9-65i9k-Cdd_fL9BxzHfieMxukW9dr2FO3RkP9r5Zn2fivQFPamUBQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1SBT2pWPHbHLxuu_nYj5zrlkrrsocqvZVsMoFCuy3tVvDfm2RbxYMHb5MlZGHmMHnJe3kIPWnGVaiYCeIyZgHXQgUWNotAOc_pkrpdvvFmE0mep5OJKHZida-FAQBPPoOOC_1dvl6qrTsq6_qzaOoQ-mHEOQ0budaOtUVC0c2KrBdZvMcs8KO0s5__yznFN47-6T9_eYbaPxI8XHw3l3N0ANUFGhbO0ww3r4xji9wXcv6Jn6H2fKoKv88kzqoNLMo54KWxsVOsr7GstJ3VxHnD-9600Vs_G_cGwc4NIZjRkNeBSIEYaXeZMTVKxYlOBSU6DEFoTuw4Ua4epWQJlwlXMbPJFyo1RANXRAG7RK1qWcEVwrYlCUOElrZKPI25XVWWlEKkS82ZDK9R22ViumoevJjuk3Dzx_dHdDwYv46mo5d8eItOXO494yO6Q616vYV7dKQ-6tlm_eAL9gUg8pdM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Electrical+Power+and+Energy+Conference+%28EPEC%29&rft.atitle=Power+System+Anomaly+Detection+Via+Ensemble+of+Encoder+and+Decoder+Networks&rft.au=Sun%2C+Xijuan&rft.au=Wu%2C+Di&rft.au=Zinflou%2C+Arnaud&rft.au=Boulet%2C+Benoit&rft.date=2022-12-05&rft.pub=IEEE&rft.spage=116&rft.epage=122&rft_id=info:doi/10.1109%2FEPEC56903.2022.10000250&rft.externalDocID=10000250 |