Research on Multi-objective Collaborative Optimization Strategies for Multi microgrid Systems Based on Data Feature Analysis

A multi microgrid system can interconnect adjacent microgrids for overall scheduling, effectively increasing the proportion of renewable energy consumption and improving the economic and stability of the operation of microgrids. However, the uncertainty of distributed renewable generation bring chal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 7th International Conference on Energy, Electrical and Power Engineering (CEEPE) s. 1188 - 1193
Hlavní autoři: Liu, Yuehan, He, Jun
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 26.04.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A multi microgrid system can interconnect adjacent microgrids for overall scheduling, effectively increasing the proportion of renewable energy consumption and improving the economic and stability of the operation of microgrids. However, the uncertainty of distributed renewable generation bring challenges to the operation of multi microgrid systems. Moreover, the current collaborative strategy of multi microgrid systems has not taken the optimization goals of different types of microgrids into account. This paper proposes a multi-objective optimization model for multi microgrid systems that considers the operational objectives of each microgrid. A scenario feature analysis method which combines Latin hypercube sampling and cluster analysis is applied to simulate the impact of uncertainty in wind and photovoltaic output on multi microgrid systems which can greatly reduce the scale of optimization problem. Adaptive grid particle swarm optimization algorithm is applied to solve the objective problem and the simulation results show that the collaborative optimization algorithm can effectively improve the renewable energy consumption rate of the system, reduce the external energy dependence of the system, and lower operating costs.
AbstractList A multi microgrid system can interconnect adjacent microgrids for overall scheduling, effectively increasing the proportion of renewable energy consumption and improving the economic and stability of the operation of microgrids. However, the uncertainty of distributed renewable generation bring challenges to the operation of multi microgrid systems. Moreover, the current collaborative strategy of multi microgrid systems has not taken the optimization goals of different types of microgrids into account. This paper proposes a multi-objective optimization model for multi microgrid systems that considers the operational objectives of each microgrid. A scenario feature analysis method which combines Latin hypercube sampling and cluster analysis is applied to simulate the impact of uncertainty in wind and photovoltaic output on multi microgrid systems which can greatly reduce the scale of optimization problem. Adaptive grid particle swarm optimization algorithm is applied to solve the objective problem and the simulation results show that the collaborative optimization algorithm can effectively improve the renewable energy consumption rate of the system, reduce the external energy dependence of the system, and lower operating costs.
Author Liu, Yuehan
He, Jun
Author_xml – sequence: 1
  givenname: Yuehan
  surname: Liu
  fullname: Liu, Yuehan
  email: 874508240@qq.com
  organization: Hubei University of Technology,Wuhan,China
– sequence: 2
  givenname: Jun
  surname: He
  fullname: He, Jun
  email: apm874@163.com
  organization: Hubei University of Technology,Wuhan,China
BookMark eNo1UM1OwzAYCxIcYOwNOOQFOvLTNs1xlA6QhoYYnKck_TKC2mZKMqQhHp7C4GLLlu2DL9Dp4AdACFMyo5TI67ppnpqSEcZmI-QzSoqqzBk9QVMpZMULwkUhZH6Ovp4hggrmDfsBP-675DKv38Ek9wG49l2ntA_qV612yfXucxRjdJ1GF7YOIrY-HJu4dyb4bXAtXh9igj7iGxWh_Zm-VUnhBai0D4Dng-oO0cVLdGZVF2H6xxP0umhe6vtsubp7qOfLzDGSp0wKaqU1VHMiha4KWnBWMWqsNFIXVGsiGNDK6DanJSgBlVXUAleiZJYaxifo6rjrAGCzC65X4bD5P4V_A9BbXxA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEEPE62022.2024.10586421
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350375794
EndPage 1193
ExternalDocumentID 10586421
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i204t-971f9fc1b3097b851532821cf9c9b51bb072e18cbd416ea7e8fa1fe3a762f1c23
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001289154000195&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jul 17 05:50:34 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-971f9fc1b3097b851532821cf9c9b51bb072e18cbd416ea7e8fa1fe3a762f1c23
PageCount 6
ParticipantIDs ieee_primary_10586421
PublicationCentury 2000
PublicationDate 2024-April-26
PublicationDateYYYYMMDD 2024-04-26
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-26
  day: 26
PublicationDecade 2020
PublicationTitle 2024 7th International Conference on Energy, Electrical and Power Engineering (CEEPE)
PublicationTitleAbbrev CEEPE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8677937
Snippet A multi microgrid system can interconnect adjacent microgrids for overall scheduling, effectively increasing the proportion of renewable energy consumption and...
SourceID ieee
SourceType Publisher
StartPage 1188
SubjectTerms Collaboration
collaborative optimization
Microgrids
Multi microgrid systems
Optimization models
Power system stability
renewable energy
Renewable energy sources
Stability criteria
Uncertainty
Title Research on Multi-objective Collaborative Optimization Strategies for Multi microgrid Systems Based on Data Feature Analysis
URI https://ieeexplore.ieee.org/document/10586421
WOSCitedRecordID wos001289154000195&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUoYmACRBHf8sDqEsdJbK-UVAyodADUrbKdMypSE5SmTPx4bCehYmBgSyI7kXzy3b3cvWeEbniUKl8vIoZHQBImgAig4AuOnFlqGQ86Ba-PfDoV87mcdWT1wIUBgNB8BiN_GWr5RWU2_leZ2-Gp8MTMARpwnrVkrb47J5K34zyf5ZlD855gFSejfvivg1NC3Jgc_POLh2i4ZeDh2U9sOUI7UB6jr75NDlclDsxZUun31mPh8dag7u7JeYJVR7HEvQItrLFLUduZeOU78d7qZYE70XJ85wJa4V99rxqFfW64qQH3qiVD9DLJn8cPpDs9gSzjKGmI5NRKa6hmkeTaJVYpc_CKGiuN1CnVOuIxUGF04XIyUByEVdQCU849WmpidoJ2y6qEU4TTQjnUqFRmE5ZoxkVRaOuAigNDmYHEnKGhX7rFRyuQsehX7fyP5xdo3xvIF2Xi7BLtNvUGrtCe-WyW6_o6mPUb2DOnHQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgIMEEiCK-8cCaEsdJHK-UoCJK6VBQt8p2zqhITVCaMvHjsZ2EioGBLY5kR_LJd_dy954RumZ-JGy9yFPMBy-kCXgJELAFR0Y10ZQ5nYLXIRuNkumUjxuyuuPCAIBrPoOefXS1_KxQK_urzJzwKLHEzE20FYUG-NR0rbY_x-c3_TQdp7HB85ZiFYS9dsKvq1Nc5Ljf--c391F3zcHD45_ocoA2ID9EX22jHC5y7LizXiHfa5-F-2uTmtGz8QWLhmSJWw1aWGKTpNYz8cL24r2V8ww3suX41oS0zC59JyqBbXa4KgG3uiVd9HKfTvoDr7k_wZsHflh5nBHNtSKS-pxJk1pF1AAsojRXXEZESp8FQBIlM5OVgWCQaEE0UGEcpCYqoEeokxc5HCMcZcLgRiFiHdJQUpZkmdQGqhg4FCsI1Qnq2q2bfdQSGbN2107_eH-FdgaTp-Fs-DB6PEO71li2RBPE56hTlSu4QNvqs5ovy0tn4m-yJ6pk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+7th+International+Conference+on+Energy%2C+Electrical+and+Power+Engineering+%28CEEPE%29&rft.atitle=Research+on+Multi-objective+Collaborative+Optimization+Strategies+for+Multi+microgrid+Systems+Based+on+Data+Feature+Analysis&rft.au=Liu%2C+Yuehan&rft.au=He%2C+Jun&rft.date=2024-04-26&rft.pub=IEEE&rft.spage=1188&rft.epage=1193&rft_id=info:doi/10.1109%2FCEEPE62022.2024.10586421&rft.externalDocID=10586421