Research on Multi-objective Collaborative Optimization Strategies for Multi microgrid Systems Based on Data Feature Analysis
A multi microgrid system can interconnect adjacent microgrids for overall scheduling, effectively increasing the proportion of renewable energy consumption and improving the economic and stability of the operation of microgrids. However, the uncertainty of distributed renewable generation bring chal...
Uloženo v:
| Vydáno v: | 2024 7th International Conference on Energy, Electrical and Power Engineering (CEEPE) s. 1188 - 1193 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
26.04.2024
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A multi microgrid system can interconnect adjacent microgrids for overall scheduling, effectively increasing the proportion of renewable energy consumption and improving the economic and stability of the operation of microgrids. However, the uncertainty of distributed renewable generation bring challenges to the operation of multi microgrid systems. Moreover, the current collaborative strategy of multi microgrid systems has not taken the optimization goals of different types of microgrids into account. This paper proposes a multi-objective optimization model for multi microgrid systems that considers the operational objectives of each microgrid. A scenario feature analysis method which combines Latin hypercube sampling and cluster analysis is applied to simulate the impact of uncertainty in wind and photovoltaic output on multi microgrid systems which can greatly reduce the scale of optimization problem. Adaptive grid particle swarm optimization algorithm is applied to solve the objective problem and the simulation results show that the collaborative optimization algorithm can effectively improve the renewable energy consumption rate of the system, reduce the external energy dependence of the system, and lower operating costs. |
|---|---|
| AbstractList | A multi microgrid system can interconnect adjacent microgrids for overall scheduling, effectively increasing the proportion of renewable energy consumption and improving the economic and stability of the operation of microgrids. However, the uncertainty of distributed renewable generation bring challenges to the operation of multi microgrid systems. Moreover, the current collaborative strategy of multi microgrid systems has not taken the optimization goals of different types of microgrids into account. This paper proposes a multi-objective optimization model for multi microgrid systems that considers the operational objectives of each microgrid. A scenario feature analysis method which combines Latin hypercube sampling and cluster analysis is applied to simulate the impact of uncertainty in wind and photovoltaic output on multi microgrid systems which can greatly reduce the scale of optimization problem. Adaptive grid particle swarm optimization algorithm is applied to solve the objective problem and the simulation results show that the collaborative optimization algorithm can effectively improve the renewable energy consumption rate of the system, reduce the external energy dependence of the system, and lower operating costs. |
| Author | Liu, Yuehan He, Jun |
| Author_xml | – sequence: 1 givenname: Yuehan surname: Liu fullname: Liu, Yuehan email: 874508240@qq.com organization: Hubei University of Technology,Wuhan,China – sequence: 2 givenname: Jun surname: He fullname: He, Jun email: apm874@163.com organization: Hubei University of Technology,Wuhan,China |
| BookMark | eNo1UM1OwzAYCxIcYOwNOOQFOvLTNs1xlA6QhoYYnKck_TKC2mZKMqQhHp7C4GLLlu2DL9Dp4AdACFMyo5TI67ppnpqSEcZmI-QzSoqqzBk9QVMpZMULwkUhZH6Ovp4hggrmDfsBP-675DKv38Ek9wG49l2ntA_qV612yfXucxRjdJ1GF7YOIrY-HJu4dyb4bXAtXh9igj7iGxWh_Zm-VUnhBai0D4Dng-oO0cVLdGZVF2H6xxP0umhe6vtsubp7qOfLzDGSp0wKaqU1VHMiha4KWnBWMWqsNFIXVGsiGNDK6DanJSgBlVXUAleiZJYaxifo6rjrAGCzC65X4bD5P4V_A9BbXxA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CEEPE62022.2024.10586421 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEL IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350375794 |
| EndPage | 1193 |
| ExternalDocumentID | 10586421 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i204t-971f9fc1b3097b851532821cf9c9b51bb072e18cbd416ea7e8fa1fe3a762f1c23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001289154000195&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Jul 17 05:50:34 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-971f9fc1b3097b851532821cf9c9b51bb072e18cbd416ea7e8fa1fe3a762f1c23 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10586421 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-April-26 |
| PublicationDateYYYYMMDD | 2024-04-26 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-April-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 7th International Conference on Energy, Electrical and Power Engineering (CEEPE) |
| PublicationTitleAbbrev | CEEPE |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8677937 |
| Snippet | A multi microgrid system can interconnect adjacent microgrids for overall scheduling, effectively increasing the proportion of renewable energy consumption and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1188 |
| SubjectTerms | Collaboration collaborative optimization Microgrids Multi microgrid systems Optimization models Power system stability renewable energy Renewable energy sources Stability criteria Uncertainty |
| Title | Research on Multi-objective Collaborative Optimization Strategies for Multi microgrid Systems Based on Data Feature Analysis |
| URI | https://ieeexplore.ieee.org/document/10586421 |
| WOSCitedRecordID | wos001289154000195&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUoYmACRBHf8sDqEsdJbK-UVAyodADUrbKdMypSE5SmTPx4bCehYmBgSyI7kXzy3b3cvWeEbniUKl8vIoZHQBImgAig4AuOnFlqGQ86Ba-PfDoV87mcdWT1wIUBgNB8BiN_GWr5RWU2_leZ2-Gp8MTMARpwnrVkrb47J5K34zyf5ZlD855gFSejfvivg1NC3Jgc_POLh2i4ZeDh2U9sOUI7UB6jr75NDlclDsxZUun31mPh8dag7u7JeYJVR7HEvQItrLFLUduZeOU78d7qZYE70XJ85wJa4V99rxqFfW64qQH3qiVD9DLJn8cPpDs9gSzjKGmI5NRKa6hmkeTaJVYpc_CKGiuN1CnVOuIxUGF04XIyUByEVdQCU849WmpidoJ2y6qEU4TTQjnUqFRmE5ZoxkVRaOuAigNDmYHEnKGhX7rFRyuQsehX7fyP5xdo3xvIF2Xi7BLtNvUGrtCe-WyW6_o6mPUb2DOnHQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgIMEEiCK-8cCaEsdJHK-UoCJK6VBQt8p2zqhITVCaMvHjsZ2EioGBLY5kR_LJd_dy954RumZ-JGy9yFPMBy-kCXgJELAFR0Y10ZQ5nYLXIRuNkumUjxuyuuPCAIBrPoOefXS1_KxQK_urzJzwKLHEzE20FYUG-NR0rbY_x-c3_TQdp7HB85ZiFYS9dsKvq1Nc5Ljf--c391F3zcHD45_ocoA2ID9EX22jHC5y7LizXiHfa5-F-2uTmtGz8QWLhmSJWw1aWGKTpNYz8cL24r2V8ww3suX41oS0zC59JyqBbXa4KgG3uiVd9HKfTvoDr7k_wZsHflh5nBHNtSKS-pxJk1pF1AAsojRXXEZESp8FQBIlM5OVgWCQaEE0UGEcpCYqoEeokxc5HCMcZcLgRiFiHdJQUpZkmdQGqhg4FCsI1Qnq2q2bfdQSGbN2107_eH-FdgaTp-Fs-DB6PEO71li2RBPE56hTlSu4QNvqs5ovy0tn4m-yJ6pk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+7th+International+Conference+on+Energy%2C+Electrical+and+Power+Engineering+%28CEEPE%29&rft.atitle=Research+on+Multi-objective+Collaborative+Optimization+Strategies+for+Multi+microgrid+Systems+Based+on+Data+Feature+Analysis&rft.au=Liu%2C+Yuehan&rft.au=He%2C+Jun&rft.date=2024-04-26&rft.pub=IEEE&rft.spage=1188&rft.epage=1193&rft_id=info:doi/10.1109%2FCEEPE62022.2024.10586421&rft.externalDocID=10586421 |