Poster: A Simple Deep Learning Based V2X Channel Estimation Scheme Using Denoising Autoencoder

To implement the V2X systems, reliable channel estimation is a major critical challenge due to the rapid time-varying characteristic of the vehicular channels. In this recent result paper, we propose a denoising autoencoder (DAE) based channel estimation scheme. The proposed scheme has a simple neur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Vehicular Networking Conference S. 281 - 282
Hauptverfasser: Oh, Kang-Hyun, Kim, Chang Hyun, Lim, Sungmook, Song, Changick
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 29.05.2024
Schlagworte:
ISSN:2157-9865
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To implement the V2X systems, reliable channel estimation is a major critical challenge due to the rapid time-varying characteristic of the vehicular channels. In this recent result paper, we propose a denoising autoencoder (DAE) based channel estimation scheme. The proposed scheme has a simple neural network structure and significantly improves the channel estimation accuracy by training the auto encoder such that it can remove the noise and distortions generated during the data pilot aided channel estimation process. Simulation results verify that the proposed DAE outperforms the conventional deep learning based channel estimation schemes.
ISSN:2157-9865
DOI:10.1109/VNC61989.2024.10575982