Poster: A Simple Deep Learning Based V2X Channel Estimation Scheme Using Denoising Autoencoder

To implement the V2X systems, reliable channel estimation is a major critical challenge due to the rapid time-varying characteristic of the vehicular channels. In this recent result paper, we propose a denoising autoencoder (DAE) based channel estimation scheme. The proposed scheme has a simple neur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Vehicular Networking Conference s. 281 - 282
Hlavní autoři: Oh, Kang-Hyun, Kim, Chang Hyun, Lim, Sungmook, Song, Changick
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.05.2024
Témata:
ISSN:2157-9865
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To implement the V2X systems, reliable channel estimation is a major critical challenge due to the rapid time-varying characteristic of the vehicular channels. In this recent result paper, we propose a denoising autoencoder (DAE) based channel estimation scheme. The proposed scheme has a simple neural network structure and significantly improves the channel estimation accuracy by training the auto encoder such that it can remove the noise and distortions generated during the data pilot aided channel estimation process. Simulation results verify that the proposed DAE outperforms the conventional deep learning based channel estimation schemes.
AbstractList To implement the V2X systems, reliable channel estimation is a major critical challenge due to the rapid time-varying characteristic of the vehicular channels. In this recent result paper, we propose a denoising autoencoder (DAE) based channel estimation scheme. The proposed scheme has a simple neural network structure and significantly improves the channel estimation accuracy by training the auto encoder such that it can remove the noise and distortions generated during the data pilot aided channel estimation process. Simulation results verify that the proposed DAE outperforms the conventional deep learning based channel estimation schemes.
Author Oh, Kang-Hyun
Lim, Sungmook
Song, Changick
Kim, Chang Hyun
Author_xml – sequence: 1
  givenname: Kang-Hyun
  surname: Oh
  fullname: Oh, Kang-Hyun
  email: k.oh@ut.ac.kr
  organization: Korea National University of Transportation,Department of Electronic Engineering,Chungju,Korea,27469
– sequence: 2
  givenname: Chang Hyun
  surname: Kim
  fullname: Kim, Chang Hyun
  email: c.kim@ut.ac.kr
  organization: Korea National University of Transportation,Department of Electronic Engineering,Chungju,Korea,27469
– sequence: 3
  givenname: Sungmook
  surname: Lim
  fullname: Lim, Sungmook
  email: smlim@ut.ac.kr
  organization: Korea National University of Transportation,Department of Electronic Engineering,Chungju,Korea,27469
– sequence: 4
  givenname: Changick
  surname: Song
  fullname: Song, Changick
  email: c.song@ut.ac.kr
  organization: Korea National University of Transportation,Department of Electronic Engineering,Chungju,Korea,27469
BookMark eNo1UEtOwzAUNAgkSukNEPIFUp6f48RmV9LykSJAKq1YUTnOCzVqnSoOC25P-c1mZjEazcwpOwptIMYuBIyFAHO5fCgyYbQZI2A6FqByZTQesJHJjZYKZIY5iEM2QKHyxOhMnbBRjO-wh0o1Sjlgr09t7Km74hM-99vdhviUaMdLsl3w4Y1f20g1X-ILL9Y2BNrwWez91va-DXzu1rQlvojfzimF1v-oyUffUnBtTd0ZO27sJtLoj4dscTN7Lu6S8vH2vpiUiUdI-8TgfoisK52nqTOqkZmyWGlTu8xhZXNXG6MtgkNVCWhAVo2oIFPG1QQaUA7Z-W-uJ6LVrts37D5X_5fIL9qdVo4
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/VNC61989.2024.10575982
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350362701
EISSN 2157-9865
EndPage 282
ExternalDocumentID 10575982
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i204t-926193db8744c95f365a2b89dc6c2ba7cd998a20c25b10f03bf1b0659cde08023
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001486996600058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:04:58 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-926193db8744c95f365a2b89dc6c2ba7cd998a20c25b10f03bf1b0659cde08023
PageCount 2
ParticipantIDs ieee_primary_10575982
PublicationCentury 2000
PublicationDate 2024-May-29
PublicationDateYYYYMMDD 2024-05-29
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-29
  day: 29
PublicationDecade 2020
PublicationTitle IEEE Vehicular Networking Conference
PublicationTitleAbbrev VNC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000548233
Score 2.2572775
Snippet To implement the V2X systems, reliable channel estimation is a major critical challenge due to the rapid time-varying characteristic of the vehicular channels....
SourceID ieee
SourceType Publisher
StartPage 281
SubjectTerms Channel estimation
DAE
Deep learning
Neural networks
Noise
Noise reduction
Simulation
Training
V2X
Title Poster: A Simple Deep Learning Based V2X Channel Estimation Scheme Using Denoising Autoencoder
URI https://ieeexplore.ieee.org/document/10575982
WOSCitedRecordID wos001486996600058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxQALX0V8ywNr2sROnJitlFZMVaVC1Ykqti8oEiRVSPn9-Ny0wMDAZtmyIvkuOp_v3nuE3Kb2SqxVEHgpV9oLBZOetL7kxQCx9bAkMZl2YhPxeJzM53LSgNUdFgYAXPMZdHHoavmm1Ct8KuuhJi0SzrVIK47FGqy1fVCxd4-Ecd6ggANf9mbjgcCWIJsFsrC72fxLRsVFkdHBP79_SDrfeDw62UaaI7IDxTHZ_0EleEJeUHUXqjvap9McGX_pA8CSNvSpr_TeRitDZ2xOEU9QwBsd2p97jVukU2u5d6CufcDuK8rcjfqrukSeSwNVhzyPhk-DR6_RTvBy5oe1JzEz4kYhu72WUcZFlDKVSKOFZiqNtbF5Vsp8zSIV-JnPVRYorLFqAwi_5aekXZQFnBEaSettyiChsR8GyD0qmGGBSESapXbpnHTwqBbLNT3GYnNKF3_MX5I9NAiW4Jm8Iu26WsE12dWfdf5R3TijfgEIPaGr
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgIAEXtiJ2fOCakjiruZXSqogSVWqpeqKK7QmKBEkVUr4fj7sABw7cLFuWIs9E4_HMe4-Q60RfiaVwHCtxhbS8gHGLa1-yQoBQe1gUqVQasYkwjqPxmPcXYHWDhQEA03wGDRyaWr4q5Ayfym5QkxYJ59bJhu95zJ7DtVZPKvr2ETHXXeCAHZvfjOJWgE1BOg9kXmO5_ZeQiokjnd1_fsEeqX8j8mh_FWv2yRrkB2TnB5ngIXlB3V0ob2mTDjLk_KX3AFO6IFB9pXc6Xik6YmOKiIIc3mhb_95z5CIdaNu9AzUNBHpfXmRm1JxVBTJdKijr5LnTHra61kI9wcqY7VUWx9zIVQL57SX3UzfwEyYirmQgmUhCqXSmlTBbMl84dmq7InUEVlmlAgTgukeklhc5HBPqc-1vQiGlse05yD4aMMWcIAqSNNFLJ6SORzWZzgkyJstTOv1j_opsdYdPvUnvIX48I9toHCzIM35OalU5gwuyKT-r7KO8NAb-AqDgpPI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Vehicular+Networking+Conference&rft.atitle=Poster%3A+A+Simple+Deep+Learning+Based+V2X+Channel+Estimation+Scheme+Using+Denoising+Autoencoder&rft.au=Oh%2C+Kang-Hyun&rft.au=Kim%2C+Chang+Hyun&rft.au=Lim%2C+Sungmook&rft.au=Song%2C+Changick&rft.date=2024-05-29&rft.pub=IEEE&rft.eissn=2157-9865&rft.spage=281&rft.epage=282&rft_id=info:doi/10.1109%2FVNC61989.2024.10575982&rft.externalDocID=10575982