Poster: A Simple Deep Learning Based V2X Channel Estimation Scheme Using Denoising Autoencoder

To implement the V2X systems, reliable channel estimation is a major critical challenge due to the rapid time-varying characteristic of the vehicular channels. In this recent result paper, we propose a denoising autoencoder (DAE) based channel estimation scheme. The proposed scheme has a simple neur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Vehicular Networking Conference s. 281 - 282
Hlavní autoři: Oh, Kang-Hyun, Kim, Chang Hyun, Lim, Sungmook, Song, Changick
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.05.2024
Témata:
ISSN:2157-9865
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:To implement the V2X systems, reliable channel estimation is a major critical challenge due to the rapid time-varying characteristic of the vehicular channels. In this recent result paper, we propose a denoising autoencoder (DAE) based channel estimation scheme. The proposed scheme has a simple neural network structure and significantly improves the channel estimation accuracy by training the auto encoder such that it can remove the noise and distortions generated during the data pilot aided channel estimation process. Simulation results verify that the proposed DAE outperforms the conventional deep learning based channel estimation schemes.
ISSN:2157-9865
DOI:10.1109/VNC61989.2024.10575982