Decoding sEMG Under Non-Ideal Conditions Toward Robust Muscle-Machine Interface Control

The evaluation of systems under non-ideal conditions is a research problem, particularly in robotic applications for the rehabilitation of people with disabilities. Accordingly, the evaluation of algorithmic strategies for robustness validation under different non-ideal conditions is a current chall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems S. 4115 - 4120
Hauptverfasser: Guerrero-Mendez, C.D., Blanco-Diaz, C.F., Lopez-Delis, A., Bastos-Filho, T., Andrade, R.M.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.10.2023
Schlagworte:
ISSN:2153-0866
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The evaluation of systems under non-ideal conditions is a research problem, particularly in robotic applications for the rehabilitation of people with disabilities. Accordingly, the evaluation of algorithmic strategies for robustness validation under different non-ideal conditions is a current challenge for the scientific community. Therefore, in this study, a computational methodology based on Extreme Learning Machine (ELM) was evaluated for the recognition of seven hand gestures using sEMG under five non-ideal conditions. The shift of eight sEMG electrodes, three upper-limb postures, increased muscle fatigue, and inter-subject and inter-day variabilities were evaluated. The results indicate that the proposed methodology performs well under specific conditions in comparison with previous strategies reported in the literature using Machine Learning classifiers. Therefore, the findings of this study are potentially important for the field of robotics; however, more efforts are still needed to develop more robust computational methods to obtain higher accuracy under non-ideal conditions, with the aim of implementing more controllable, usable, and reliable systems.
AbstractList The evaluation of systems under non-ideal conditions is a research problem, particularly in robotic applications for the rehabilitation of people with disabilities. Accordingly, the evaluation of algorithmic strategies for robustness validation under different non-ideal conditions is a current challenge for the scientific community. Therefore, in this study, a computational methodology based on Extreme Learning Machine (ELM) was evaluated for the recognition of seven hand gestures using sEMG under five non-ideal conditions. The shift of eight sEMG electrodes, three upper-limb postures, increased muscle fatigue, and inter-subject and inter-day variabilities were evaluated. The results indicate that the proposed methodology performs well under specific conditions in comparison with previous strategies reported in the literature using Machine Learning classifiers. Therefore, the findings of this study are potentially important for the field of robotics; however, more efforts are still needed to develop more robust computational methods to obtain higher accuracy under non-ideal conditions, with the aim of implementing more controllable, usable, and reliable systems.
Author Blanco-Diaz, C.F.
Lopez-Delis, A.
Bastos-Filho, T.
Andrade, R.M.
Guerrero-Mendez, C.D.
Author_xml – sequence: 1
  givenname: C.D.
  surname: Guerrero-Mendez
  fullname: Guerrero-Mendez, C.D.
  email: cristian.mendez@edu.ufes.br
  organization: Federal University of Espírito Santo (UFES),Postgraduate Program in Electrical Engineering,Vitória,Brazil
– sequence: 2
  givenname: C.F.
  surname: Blanco-Diaz
  fullname: Blanco-Diaz, C.F.
  email: cristian.diaz@edu.ufes.br
  organization: Federal University of Espírito Santo (UFES),Postgraduate Program in Electrical Engineering,Vitória,Brazil
– sequence: 3
  givenname: A.
  surname: Lopez-Delis
  fullname: Lopez-Delis, A.
  email: lopez.delis69@gmail.com
  organization: Center of Medical Biophysics, Universidad de Oriente,Cuba
– sequence: 4
  givenname: T.
  surname: Bastos-Filho
  fullname: Bastos-Filho, T.
  email: teodiano.bastos@ufes.br
  organization: Federal University of Espírito Santo (UFES),Postgraduate Program in Electrical Engineering,Vitória,Brazil
– sequence: 5
  givenname: R.M.
  surname: Andrade
  fullname: Andrade, R.M.
  email: rafhael.andrade@ufes.br
  organization: Federal University of Espírito Santo (UFES),Graduate Program in Mechanical Engineering,Vitória,Brazil
BookMark eNo1kN1KAzEUhKMo2Na-gWBeYOvJbzeXUmtdaC3UFi9LNjmrkTWRzRbx7a2oczMXwzcwMyRnMUUk5JrBhDEwN9Vm_aSO4hMOXEwYCMkUiBMyZForaZgBfUoGnClRQKn1BRnn_AYADKamNHpAnu_QJR_iC83z1YLuoseOPqZYVB5tS2cp-tCHFDPdpk_bebpJ9SH3dHXIrsViZd1riEir2GPXWIc_RN-l9pKcN7bNOP7zEdndz7ezh2K5XlSz22UROMi-KJWfOl0rzZA1xkvJlWLKegXOAhqoFXNlWXuOUjVW11Mj8ZgftwgrjJBiRK5-ewMi7j-68G67r_3_EeIbDYNTyw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IROS55552.2023.10341503
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665491906
9781665491907
EISSN 2153-0866
EndPage 4120
ExternalDocumentID 10341503
Genre orig-research
GrantInformation_xml – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
  grantid: 001
  funderid: 10.13039/501100002322
– fundername: Fundaçao de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES)
  grantid: 285/2021,28/2022,151/2021,2021-8GJZ6,460/2021,2021-L7SZ4
  funderid: 10.13039/501100005667
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i204t-85d7c6b561e1f9d4425515ad50ca0e90b51c88bd2e45fa6b794e15a0863a39343
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001133658803015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:25:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-85d7c6b561e1f9d4425515ad50ca0e90b51c88bd2e45fa6b794e15a0863a39343
PageCount 6
ParticipantIDs ieee_primary_10341503
PublicationCentury 2000
PublicationDate 2023-Oct.-1
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-1
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems
PublicationTitleAbbrev IROS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079896
Score 2.2478225
Snippet The evaluation of systems under non-ideal conditions is a research problem, particularly in robotic applications for the rehabilitation of people with...
SourceID ieee
SourceType Publisher
StartPage 4115
SubjectTerms Extreme learning machines
Fatigue
Finance
Machine learning
Machine learning algorithms
Muscles
Scholarships
Title Decoding sEMG Under Non-Ideal Conditions Toward Robust Muscle-Machine Interface Control
URI https://ieeexplore.ieee.org/document/10341503
WOSCitedRecordID wos001133658803015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCFVxFveWB1cWM7jufSQiVaqlKgWxW_pC4JahJ-PxenUBgYyBTFykO-nO_h77tD6EaoSFoQJ5FOQYAiDCNgFS3hLPKSplTbsIP_-ijH42Q-V5M1WT1wYZxzAXzmOvVp2Mu3uanqVBloOKy5oq7tuS1l3JC1NgkVKlWi4jWGq0vV7XD69CzgqPlWEet83f2rj0owI4P9f37AAWpvCHl48m1qDtGWy47Q3o9agsfo7Q4CyXoUF_3RPQ79jPA4z8jQgi-I4UG2QWfhWUDK4mmuq6LEo6qAP4eMAqjS4ZAh9Cm8r9eA2NvoZdCf9R7IumsCWUaUlyQRVppYg1_kul5ZDkoJPktqBTUpdYpq0TVJom3kuPBprEEhHYxDaMNSphhnJ6iV5Zk7RTgELLGkBnwQHlOlPYd1WngQMNNU-DPUrudo8d4Uxlh8Tc_5H9cv0G4tiQYLd4la5apyV2jHfJTLYnUdxPkJvaSeUw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQQQIWXkW88cDq4sZ2Es-lpRFNqEqBblUcO1KXBDUJv5-L01IYGMgUxcpDd7Hv4e-7Q-hOSMfToE7iGQkBikgYAauoCWdO6tGYKm138N9GXhT5s5kcr8jqlgtjjLHgM9OpT-1evs6Tqk6VwQyHNVfUtT23BecObeham5QK9aQv3RWKq0vlfTB5fhFw1Iwrh3XW9__qpGINyeDgn59wiNobSh4efxubI7RlsmO0_6Oa4Al6f4BQsh7FRT98xLajEY7yjAQavEEMD9INPgtPLVYWT3JVFSUOqwL-HRJaWKXBNkeYxvC-XgNjb6PXQX_aG5JV3wSycCgviS-0l7gKPCPTTaUGSYFbJGItaBJTI6kS3cT3lXYMF2nsKpiSBsYhuGExk4yzU9TK8sycIWxDFtejCXgh3KVSpRxWapGCipmiIj1H7VpG84-mNMZ8LZ6LP67fot3hNBzNR0H0dIn2aq00yLgr1CqXlblGO8lnuSiWN1a1XyvUoZo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems&rft.atitle=Decoding+sEMG+Under+Non-Ideal+Conditions+Toward+Robust+Muscle-Machine+Interface+Control&rft.au=Guerrero-Mendez%2C+C.D.&rft.au=Blanco-Diaz%2C+C.F.&rft.au=Lopez-Delis%2C+A.&rft.au=Bastos-Filho%2C+T.&rft.date=2023-10-01&rft.pub=IEEE&rft.eissn=2153-0866&rft.spage=4115&rft.epage=4120&rft_id=info:doi/10.1109%2FIROS55552.2023.10341503&rft.externalDocID=10341503