Non-Invasive Continuous Real-Time Blood Glucose Estimation Using PPG Features-based Convolutional Autoencoder with TinyML Implementation
In this paper, we developed a convolutional autoencoder for non-invasive continuous monitoring of blood glucose levels (BGL) using four photoplethysmography (PPG) features. The model was specifically designed to account for temporal relations among consecutive PPG segments' features and transie...
Uloženo v:
| Vydáno v: | IEEE International Symposium on Circuits and Systems proceedings s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
19.05.2024
|
| Témata: | |
| ISSN: | 2158-1525 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!