Joint Scheduling and Power Allocation with Per-User Rate Constraints for Uplink MU-MIMO OFDMA Systems

This paper studies the joint scheduling and power allocation for uplink multiuser multi-input multi-output (MU-MIMO) orthogonal frequency division multiple access (OFDMA) systems. The objective is to minimize the number of occupied resource blocks (RBs) subject to per-user rate constraints. The prob...

Full description

Saved in:
Bibliographic Details
Published in:IEEE Vehicular Technology Conference pp. 1 - 5
Main Authors: Zhang, Lin, Han, Shengqian, Yang, Chenyang
Format: Conference Proceeding
Language:English
Published: IEEE 01.06.2023
Subjects:
ISSN:2577-2465
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper studies the joint scheduling and power allocation for uplink multiuser multi-input multi-output (MU-MIMO) orthogonal frequency division multiple access (OFDMA) systems. The objective is to minimize the number of occupied resource blocks (RBs) subject to per-user rate constraints. The problem is a mixed integer and non-convex programming problem. We first propose a hierarchical algorithm to find a solution, where in the outer layer the number of RBs are reduced in a greedy manner while in the inner layer the power allocation and scheduling of users are optimized to determine which RB should be unoccupied. The inner problem is non-convex high-complexity problem. To reduce the complexity, we further employ a deep neural network to learn the solution of the inner problem. Simulation results show that compared to two baseline methods, the proposed method can effectively reduce the occupied RBs with much lower complexity.
AbstractList This paper studies the joint scheduling and power allocation for uplink multiuser multi-input multi-output (MU-MIMO) orthogonal frequency division multiple access (OFDMA) systems. The objective is to minimize the number of occupied resource blocks (RBs) subject to per-user rate constraints. The problem is a mixed integer and non-convex programming problem. We first propose a hierarchical algorithm to find a solution, where in the outer layer the number of RBs are reduced in a greedy manner while in the inner layer the power allocation and scheduling of users are optimized to determine which RB should be unoccupied. The inner problem is non-convex high-complexity problem. To reduce the complexity, we further employ a deep neural network to learn the solution of the inner problem. Simulation results show that compared to two baseline methods, the proposed method can effectively reduce the occupied RBs with much lower complexity.
Author Han, Shengqian
Zhang, Lin
Yang, Chenyang
Author_xml – sequence: 1
  givenname: Lin
  surname: Zhang
  fullname: Zhang, Lin
  email: lin.zhang@buaa.edu.cn
  organization: Beihang University,Beijing,China
– sequence: 2
  givenname: Shengqian
  surname: Han
  fullname: Han, Shengqian
  email: sqhan@buaa.edu.cn
  organization: Beihang University,Beijing,China
– sequence: 3
  givenname: Chenyang
  surname: Yang
  fullname: Yang, Chenyang
  email: cyyang@buaa.edu.cn
  organization: Beihang University,Beijing,China
BookMark eNo1kMtOAjEARavRRED-wEW3Lop90s6SjKIYJhABt6T0IaNDa6Y1hL93jLq6yb05Z3H74CLE4AC4JXhECC7uXtclxZSh1Wdbhzchx0SNfooRwRRjxdkZGBayUExgRgjh7Bz0qJASUT4WV6Cf0jvGmJAx7QH3HOuQ4crsnf1qOh3UwcJlPLoWTpomGp3rGOCxznu4dC3apG540dnBMoaUW93RCfrYws1nh3_AaoOqWbWAi-l9NYGrU8rukK7BpddNcsO_HID19GFdPqH54nFWTuaopphnpKjw1hlu5U4KJbxxO6uYUdRLi0VhvCFemoIzqyVxXktqKbHGMFN4yyUbgJtfbe2c23bvHHR72v6_wr4BNf9c3w
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/VTC2023-Spring57618.2023.10200843
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350311143
EISSN 2577-2465
EndPage 5
ExternalDocumentID 10200843
Genre orig-research
GroupedDBID -~X
29I
6IE
6IH
AFFNX
AI.
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
RNS
VH1
ID FETCH-LOGICAL-i204t-825fdec4d7b7585fcebd83c82f7d059cfc1f7c943da71efa72d21dcc3c9fd473
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001054797202091&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:18:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-825fdec4d7b7585fcebd83c82f7d059cfc1f7c943da71efa72d21dcc3c9fd473
PageCount 5
ParticipantIDs ieee_primary_10200843
PublicationCentury 2000
PublicationDate 2023-June
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June
PublicationDecade 2020
PublicationTitle IEEE Vehicular Technology Conference
PublicationTitleAbbrev VTC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001162
Score 2.2283502
Snippet This paper studies the joint scheduling and power allocation for uplink multiuser multi-input multi-output (MU-MIMO) orthogonal frequency division multiple...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial neural networks
deep learning
Learning systems
MU-MIMO OFDMA
OFDM
power allocation
Programming
Scheduling
Simulation
Vehicular and wireless technologies
Title Joint Scheduling and Power Allocation with Per-User Rate Constraints for Uplink MU-MIMO OFDMA Systems
URI https://ieeexplore.ieee.org/document/10200843
WOSCitedRecordID wos001054797202091&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6EGKMXf2H8nR68eCiua0e7I0GJGgeLguFGRvtKiGYYGP79tmWgHjx4a5ZmWfr69l5f3_d9CF1JyhrGmBGBiHPCmdIka8SUGA4s5kLYmOp5Zp9EpyMHgzgtweoeCwMAvvkM6m7o7_L1VC1cqcx6uLut56yCKkKIJVhr_dultBFuoeuSRPPmtddyyuBkWR-zWTV1jVwhq69e8ktOxUeT9u4_v2MP1b5xeThdR5x9tAH5Adr5QSl4iOBxOskL_GJtoV2T-Rhnucap00LDzXcXuZwlsCu_4hRmpG-3IH62CSd20p1eMKKYY5vJ4r7D6r7hpE-Sh6SLu-3bpIlLgvMa6rXveq17UkopkEkY8ILYc6DRoLgWI3dAMApGWjIlQyO0TbCUUdQIFXOmM0HBZCLUIdVKMRUbzQU7QtV8msMxwjKQIJ3X64BxYVgc2FkyCkxENYtMdoJqbsGGH0uyjOFqrU7_eH6Gtr2dfGHjHFWL2QIu0Kb6LCbz2aU38RfEvaci
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BQSwXtiJ2fODCwSWOnTo5VoWqhaaNoEW9VakXVIFS1KZ8P7abshw4cIuiaBR5bM94PO89gKuQ0KrWeoRVwBhmVEicViOCNVM0YpybmOp4Ztu80wkHgygpwOoOC6OUcs1nqmIf3V2-nIi5LZWZFW5v6xldhTVj2ScLuNbXxktI1d-A64JG8-a5V7fa4HhRITN5NbGtXD6tLM38ElRx8aSx888_2YXyNzIPJV8xZw9WVLYP2z9IBQ9A3U_GWY6ejDekbTN_QWkmUWLV0FDtzcYu6wtkC7AoUVPcN5MQPZqUE1nxTicZkc-QyWVR36J1X1Hcx3Er7qJu4zauoYLivAy9xl2v3sSFmAIe-x7LsTkJaqkEk3xkjwhaqJEMqQh9zaVJsYQWRHMRMSpTTpROuS99IoWgItKScXoIpWySqSNAoReq0K576VHGNY0881UYeDogkgY6PYayHbDh-4IuY7gcq5M_3l_CZrMXt4ftVufhFLacz1yZ4wxK-XSuzmFdfOTj2fTCufsTpDGqaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Vehicular+Technology+Conference&rft.atitle=Joint+Scheduling+and+Power+Allocation+with+Per-User+Rate+Constraints+for+Uplink+MU-MIMO+OFDMA+Systems&rft.au=Zhang%2C+Lin&rft.au=Han%2C+Shengqian&rft.au=Yang%2C+Chenyang&rft.date=2023-06-01&rft.pub=IEEE&rft.eissn=2577-2465&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FVTC2023-Spring57618.2023.10200843&rft.externalDocID=10200843